Read more
Nutritional Epigenomics, Second Edition, Volume Fourteen in the Translational Epigenetics series, offers a comprehensive overview of nutritional epigenomics as a mode of study, along with nutrition’s role in the epigenomic regulation of disease, health, and developmental processes. Here, an expert team of international contributors introduces readers to nutritional epigenomic regulators of gene expression, our diet’s role in epigenomic regulation of disease and disease inheritance, caloric restriction and exercise as they relate to recent epigenomic findings, and the influence of nutritional epigenomics over circadian rhythms, aging and longevity, and fetal health and development, among other processes.
Disease specific chapters address metabolic disease (obesity and diabetes), cancer, and neurodegeneration, among other disorders. Diet-gut microbiome interactions in the epigenomic regulation of disease are also discussed, as is the role of micronutrients and milk miRNAs in epigenetic regulation. Finally, chapter authors examine ongoing discussions of race and ethnicity in the social-epigenomic regulation of health and disease. This new edition has been fully updated to reflect current research in the field.
List of contents
SECTION I Introduction1. Introduction to nutritional epigenomics
SECTION II Epigenetic regulators2. DNA methylation and chromatin modifications
3. Small non-coding RNAs as epigenetic regulators
SECTION III Epigenomic regulation of disease4. The impact of race and ethnicity in the social epigenomic regulation of disease
5. The epigenomic impact of methylation in metabolic dysfunction and cancer
6. The role for DNA/RNA methylation on neurocognitive dysfunctions
7. Histone acylation in the epigenomic regulation of insulin action and metabolic disease
8. Cancer and non-coding RNAs 8. Race in the social-epigenomic regulation of pre- and perinatal development
9. Social and Physical environments in the control of DNA methylation and inflammation during early development
10. Maternal nutrition, epigenetic programming and metabolic syndrome 11. Epigenetic inheritance of metabolic signals
12. The paternal diet regulates the offspring epigenome and health
SECTION V Nutritional epigenomics and the circadian clock13. The interplay between diet, epigenetics and the circadian clock
14. Epigenetic regulation of the fetal circadian clock: implications for nutritional programming of circadian and metabolic function
15. The role for the microbiome in the regulation of the circadian clock and metabolism
SECTION VI Caloric restriction and exercise in the epigenomic regulation of aging and disease16. Epigenomic reprogramming of caloric restriction on aging
17. Dietary restriction in the epigenomic regulation of cardiovascular diseases
18. Epigenomic adaptations of exercise in the control of metabolic disease and cancer
SECTION VII Macro- and micronutrients as epigenomic regulators of health and disease19. B-vitamins and one-carbon metabolism: impacts on the epigenome during development
20. Food bioactives in the epigenomic regulation of metabolic disease 21. Phytochemicals as dietary regulators of the cancer epigenome
22. Regulation of non-coding RNAs by phytochemicals for cancer therapy
23. Short chain fatty acids as epigenetic and metabolic regulators of neurocognitive health and disease
About the author
Bradley S. Ferguson is an Associate Professor of Nutrition at the University of Nevada, Reno, Nevada. His lab adopts integrative, translational research approaches that encompass bioinformatics, in vitro cell culture, and in vivo animal models to elucidate dietary food components that act as epigenetic modifiers, as well as the role of dietary epigenetic modifiers on pathological cardiac signaling, gene expression, and remodeling. He also seeks to understand how sarcomere protein acetylation links metabolic disease (obesity and diabetes) to pathological cardiac remodeling and skeletal muscle dysfunction. Dr. Ferguson has published his findings across a wide range of peer-reviewed journals, including Scientific Reports, Journal of Animal Science, American Journal of Physiology, Cell Reports, PNAS, and the Journal of Molecular and Cellular Cardiology.