Fr. 37.90

Machine Learning - Eine Einführung für Psychologie, Geistes- und Sozialwissenschaften

German · Paperback / Softback

Will be released 22.07.2025

Description

Read more

Dieses Buch richtet sich an alle, welche die enormen Potenziale maschinellen Lernens für wissenschaftliche Fragestellungen und innovative Ansätze in Studium oder Beruf nutzen möchten. Denn maschinelles Lernen eröffnet neue Möglichkeiten zum effizienten Umgang mit umfassenden, komplex strukturierten und sich schnell entwickelnden Daten. Zunächst werden Grundideen und typische Anwendungsfelder maschinellen Lernens sowie dessen Vorzüge gegenüber inferenzstatistischen Verfahren erläutert. Daran schließen praktische Hinweise dazu an, wie Daten für maschinelle Lernprozesse aufbereitet werden und wie diese durch Anpassung verschiedener Parameter möglichst optimale Ergebnisse erzielen können. Von den hierzu einsetzbaren Modellen werden die gängigsten theoretisch und anhand anschaulicher Beispiele vorgestellt. Auch auf verschiedene Optionen zur besseren Interpretierbarkeit sowie auf spezifische Limitationen von Analyseresultaten wird eingegangen. Weiterführende Anwendungsfälle und verständlich kommentierte Analysecodes sind auf dem GitHub-Repositorium zu diesem Buch auf SpringerLink online verfügbar.

List of contents

Einführung.- Grundidee des Machine Learning.- Preprocessing.- Optimierung.- Modelle.- Interpretierbares Machine Learning.- Faires Machine Learning.- Glossar.

About the author

Sven Hilbert ist Inhaber des Lehrstuhls Educational Data Science an der Universität Regensburg.
Elisabeth Kraus ist Juniorprofessorin für Methoden der Empirischen Bildungsforschung am Hector-Institut für Empirische Bildungsforschung an der Eberhard Karls Universität Tübingen.
Alfred Lindl leitet die interdisziplinäre Forschungsgruppe FALKO-PV (Fachspezifische Lehrkraftkompetenzen – Prädiktive Validierung) am Lehrstuhl Educational Data Science an der Universität Regensburg.
 

Summary

Dieses Buch richtet sich an alle, welche die enormen Potenziale maschinellen Lernens für wissenschaftliche Fragestellungen und innovative Ansätze in Studium oder Beruf nutzen möchten. Denn maschinelles Lernen eröffnet neue Möglichkeiten zum effizienten Umgang mit umfassenden, komplex strukturierten und sich schnell entwickelnden Daten. Zunächst werden Grundideen und typische Anwendungsfelder maschinellen Lernens sowie dessen Vorzüge gegenüber inferenzstatistischen Verfahren erläutert. Daran schließen praktische Hinweise dazu an, wie Daten für maschinelle Lernprozesse aufbereitet werden und wie diese durch Anpassung verschiedener Parameter möglichst optimale Ergebnisse erzielen können. Von den hierzu einsetzbaren Modellen werden die gängigsten theoretisch und anhand anschaulicher Beispiele vorgestellt. Auch auf verschiedene Optionen zur besseren Interpretierbarkeit sowie auf spezifische Limitationen von Analyseresultaten wird eingegangen. Weiterführende Anwendungsfälle und verständlich kommentierte Analysecodes sind auf dem GitHub-Repositorium zu diesem Buch auf SpringerLink online verfügbar.

Additional text

Maschinelles Lernen (ML) bietet einen Rahmen für die Analyse hochdimensionaler Datensätze durch Modellierung komplexer, oft non-linearer Beziehungen. Der Einfluss von ML-Methoden auf die Forschung und praktische Anwendungen in den Sozial- und Bildungswissenschaften ist immer noch begrenzt, wächst jedoch rapide und kontinuierlich. Algorithmen, die im Rahmen von ML eingesetzt werden sind vielfältig bezüglich ihrer mathematischen Ansätze und ihres Einsatzgebiets. Dieses Buch gibt einen Überblick der gängigen Verfahren, insbesondere ihrer Philosophie, Funktionsweisen und Anwendung. Sowohl die Nutzung klassischer linearer Regressionsmodelle im ML-Framework als auch Baum-basierte und regularisierte Regressionsverfahren werden einzeln behandelt und in das Gesamtbild der Analyse mit ML eingeordnet. Methodisch werden Verbindungen zu und Gemeinsamkeiten mit inferenzstatistischen Ansätzen beleuchtet. Hierbei wird besonders die verschiedenen philosophischen Perspektiven, (geschachtelte) Resampling Verfahren und das Zusammenspiel von Bias und Varianz. Ein weiterer Schwerpunkt liegt auf der praktischen Anwendung von ML auf konkrete Fragestellung empirischer Sozialwissenschaften, welche auch die notwenigen Voraussetzungen der Datenstrukturen und Preprocessing von Datensätzen beinhaltet. Das Buch soll Wissenschaftlern und Praktikern helfen, sich mit den Chancen und Herausforderung immer größerer und komplexerer digitaler Datensätze vertraut zu machen. Hierbei wird auf mathematischer wie auf inhaltlicher Ebene ein Verständnis der grundlegenden Funktionsweisen mit Detailwissen in einzelnen Bereichen verbunden.

Product details

Authors Hilbert, Sven Hilbert, Elisabeth Kraus, Alfred Lindl
Publisher Springer, Berlin
 
Languages German
Product format Paperback / Softback
Release 22.07.2025
 
EAN 9783658436483
ISBN 978-3-658-43648-3
No. of pages 154
Illustrations XV, 154 S. 34 Abb., 29 Abb. in Farbe.
Series Quantitative Sozialforschung
Subjects Social sciences, law, business > Sociology

A, machine learning, Political Science, Philosophy, Social Sciences, Methodology, Political science and theory, Topics in philosophy, Sociological Methods, Databases, Philosophical Methods, Data Analysis and Big Data, Methodology of Political Science, Quantitative research

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.