Fr. 168.00

Integral Equation Methods for Evolutionary PDE - A Convolution Quadrature Approach

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book provides a comprehensive analysis of time domain boundary integral equations and their discretisation by convolution quadrature and the boundary element method.
Properties of convolution quadrature, based on both linear multistep and Runge-Kutta methods, are explained in detail, always with wave propagation problems in mind. Main algorithms for implementing the discrete schemes are described and illustrated by short Matlab codes; translation to other languages can be found on the accompanying GitHub page. The codes are used to present numerous numerical examples to give the reader a feeling for the qualitative behaviour of the discrete schemes in practice. Applications to acoustic and electromagnetic scattering are described with an emphasis on the acoustic case where the fully discrete schemes for sound-soft and sound-hard scattering are developed and analysed in detail. A strength of the book is that more advanced applications such as linear and non-linear impedance boundary conditions and FEM/BEM coupling are also covered. While the focus is on wave scattering, a chapter on parabolic problems is included which also covers the relevant fast and oblivious algorithms. Finally, a brief description of data sparse techniques and modified convolution quadrature methods completes the book.
Suitable for graduate students and above, this book is essentially self-contained, with background in mathematical analysis listed in the appendix along with other useful facts. Although not strictly necessary, some familiarity with boundary integral equations for steady state problems is desirable.

List of contents

1 Some examples of causal convolutions.- 2 Convolution quadrature for hyperbolic symbols.- 3 Algorithms for CQ: linear multistep methods.- 4 Acoustic scattering in the time domain.- 5 Runge-Kutta CQ.- 6 Transient electromagnetism.- 7 Boundary-field formulations.- 8 Parabolic problems.- 9 Data sparse methods and other topics.

About the author










¿Lehel Banjai is an Associate Professor at the Maxwell Institute for Mathematics in the Sciences, Heriot-Watt University, Edinburgh. The author of over 40 journal articles, he is best known for his work on time-domain boundary integral equations. He is currently an Associate Editor of the SIAM Journal on Numerical Analysis.


Francisco-Javier Sayas was a Professor of Mathematical Sciences at the University of Delaware. He published over one hundred research articles in refereed journals and the books Retarded Potentials and Time Domain Boundary Integral Equations, Variational Techniques for Elliptic Partial Differential Equations and An Invitation to the Theory of the Hybridizable Discontinuous Galerkin Method.


Product details

Authors Lehel Banjai, Francisco-Javier Sayas
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 23.11.2023
 
EAN 9783031132223
ISBN 978-3-0-3113222-3
No. of pages 268
Dimensions 155 mm x 15 mm x 235 mm
Illustrations XIX, 268 p. 1 illus.
Series Springer Series in Computational Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.