Share
Fr. 52.50
Goebbels, Steffen Goebbels, Stefan Ritter
Mathematik verstehen und anwenden: Differenzialgleichungen, Fourier- und Vektoranalysis, Laplace-Transformation und Stochastik
German · Paperback / Softback
Shipping usually within 1 to 3 working days
Description
Basierend auf Grundkenntnissen aus der Schulzeit oder aus dem ersten Band des Gesamtwerks "Mathematik verstehen und anwenden" führt dieser zweite Band in die Vektoranalysis, in das Gebiet der Differenzialgleichungen und in die Fourier-Analysis einschließlich der Laplace-Transformation ein und beinhaltet außerdem eine Einführung in die Wahrscheinlichkeitsrechnung und Statistik. Damit er unabhängig vom ersten Band gelesen werden kann, beginnt er mit einer kurzen Zusammenfassung der wichtigsten Begriffe und Ergebnisse der Differenzial- und Integralrechnung sowie der Linearen Algebra.
Zielgruppe sind Studierende der Ingenieur- und Naturwissenschaften an Fachhochschulen und Universitäten. Trotz der verständlichen Darstellung für ein Bachelor-Studium geht die mathematische Exaktheit nicht verloren. Hintergrundinformationen und Beweise ergänzen die sehr umfangreiche Stoffauswahl und bieten Anknüpfungspunkte für ein Masterstudium. Daneben erleichtern sie auch den Einstieg in Spezialvorlesungen der Mathematik wie beispielsweise die Numerik, die Funktionalanalysis und insbesondere die Fourier-Analysis.
In der vierten Auflage wurden viele Anwendungsbeispiele ergänzt und der Text grundlegend überarbeitet.
Stimmen zur ersten Auflage:
"Sowohl mathematisch exakt als auch äußerst anschaulich. Eine echte Bereicherung der großen Auswahl an Büchern zum Thema Ingenieurmathematik."
Prof. Dr. Andreas Gessinger, Rheinische Fachhochschule Köln
"Der Spagat zwischen Verständlichkeit und mathematischer Tiefe ist hervorragend gelungen. Eine breite Palette von praxisorientierten Beispielen wirkt motivationsfördernd."
Prof. Dr. Helga Tecklenburg, Hochschule für Technik, Wirtschaft und Kultur Leipzig
List of contents
Vorwort.- Notationen und Voraussetzungen in Kürze.- Teil I Funktionen mit mehreren Variablen.- Differenzialrechnung für multivariate Funktionen.- Extremwertrechnung.- Integralrechnung mit mehreren Variablen.- Vektoranalysis.- Aufgaben zu Teil I.- Teil II Differenzialgleichungen.- Differenzialgleichungen und ihre Lösungen.- Lineare Differenzialgleichungssysteme.- Lineare Differenzialgleichungen höherer Ordnung.- Partielle Differenzialgleichungen, Finite-Elemente.- Aufgaben zu Teil II.- Teil III Fourier-Reihen und Integraltransformationen.- Fourier-Reihen.- Fourier-Transformation.- Laplace-Transformation.- Diskrete Fourier-Transformation.- Wavelets und schnelle Wavelet-Transformation.- Aufgaben zu Teil III.- Teil IV Wahrscheinlichkeitsrechnung und Statistik.- Beschreibende Statistik.- Wahrscheinlichkeitsrechnung.- Schließende Statistik.- Aufgaben zu Teil IV.- Kleine Formelsammlung.- Index.
About the author
An der Hochschule Niederrhein in Krefeld ist Dr. Steffen Goebbels Professor im Fachbereich Elektrotechnik und Informatik, wo er Höhere Mathematik und Spezialthemen der Informatik unterrichtet.
Beide Mathematiker haben einen anwendungsbezogenen Hintergrund (langjährige Projekte bei IBM und Daimler-Benz) und bringen ihre Erfahrung mit Studienanfängern in diesen Text ein.
Summary
Basierend auf Grundkenntnissen aus der Schulzeit oder aus dem ersten Band des Gesamtwerks „Mathematik verstehen und anwenden“ führt dieser zweite Band in die Vektoranalysis, in das Gebiet der Differenzialgleichungen und in die Fourier-Analysis einschließlich der Laplace-Transformation ein und beinhaltet außerdem eine Einführung in die Wahrscheinlichkeitsrechnung und Statistik. Damit er unabhängig vom ersten Band gelesen werden kann, beginnt er mit einer kurzen Zusammenfassung der wichtigsten Begriffe und Ergebnisse der Differenzial- und Integralrechnung sowie der Linearen Algebra.
Zielgruppe sind Studierende der Ingenieur- und Naturwissenschaften an Fachhochschulen und Universitäten. Trotz der verständlichen Darstellung für ein Bachelor-Studium geht die mathematische Exaktheit nicht verloren. Hintergrundinformationen und Beweise ergänzen die sehr umfangreiche Stoffauswahl und bieten Anknüpfungspunkte für ein Masterstudium. Daneben erleichtern sie auch den Einstieg in Spezialvorlesungen der Mathematik wie beispielsweise die Numerik, die Funktionalanalysis und insbesondere die Fourier-Analysis.
Stimmen zur ersten Auflage:
„Sowohl mathematisch exakt als auch äußerst anschaulich. Eine echte Bereicherung der großen Auswahl an Büchern zum Thema Ingenieurmathematik.“
Prof. Dr. Andreas Gessinger, Rheinische Fachhochschule Köln
„Der Spagat zwischen Verständlichkeit und mathematischer Tiefe ist hervorragend gelungen. Eine breite Palette von praxisorientierten Beispielen wirkt motivationsfördernd.“
Prof. Dr. Helga Tecklenburg, Hochschule für Technik, Wirtschaft und Kultur Leipzig
Additional text
Basierend auf Grundkenntnissen aus der Schulzeit oder aus dem ersten Band des Gesamtwerks „Mathematik verstehen und anwenden“ führt dieser zweite Band in die Vektoranalysis, in das Gebiet der Differenzialgleichungen und in die Fourier-Analysis einschließlich der Laplace-Transformation ein und beinhaltet außerdem eine Einführung in die Wahrscheinlichkeitsrechnung und Statistik. Damit er unabhängig vom ersten Band gelesen werden kann, beginnt er mit einer kurzen Zusammenfassung der wichtigsten Begriffe und Ergebnisse der Differenzial- und Integralrechnung sowie der Linearen Algebra. Zielgruppe sind Studierende der Ingenieur- und Naturwissenschaften an Fachhochschulen und Universitäten. Trotz der verständlichen Darstellung für ein Bachelor-Studium geht die mathematische Exaktheit nicht verloren. Hintergrundinformationen und Beweise ergänzen die sehr umfangreiche Stoffauswahl und bieten Anknüpfungspunkte für ein Masterstudium. Daneben erleichtern sie auch den Einstieg in Spezialvorlesungen der Mathematik wie beispielsweise die Numerik, die Funktionalanalysis und insbesondere die Fourier-Analysis. In der vierten Auflage wurden viele Anwendungsbeispiele ergänzt und der Text grundlegend überarbeitet. Stimmen zur ersten Auflage: „Sowohl mathematisch exakt als auch äußerst anschaulich. Eine echte Bereicherung der großen Auswahl an Büchern zum Thema Ingenieurmathematik.“ Prof. Dr. Andreas Gessinger, Rheinische Fachhochschule Köln „Der Spagat zwischen Verständlichkeit und mathematischer Tiefe ist hervorragend gelungen. Eine breite Palette von praxisorientierten Beispielen wirkt motivationsfördernd.“ Prof. Dr. Helga Tecklenburg, Hochschule für Technik, Wirtschaft und Kultur Leipzig
Product details
Authors | Goebbels, Steffen Goebbels, Stefan Ritter |
Publisher | Springer, Berlin |
Languages | German |
Product format | Paperback / Softback |
Released | 05.02.2024 |
EAN | 9783662683682 |
ISBN | 978-3-662-68368-2 |
No. of pages | 605 |
Dimensions | 155 mm x 33 mm x 235 mm |
Illustrations | XVIII, 605 S. 110 Abb., 24 Abb. in Farbe. Mit Online-Extras. |
Subjects |
Natural sciences, medicine, IT, technology
> Mathematics
> Analysis
Statistik, Analysis, Stochastik, Prüfungsvorbereitung, A, Wahrscheinlichkeitsrechnung und Statistik, Fourier-Transformation, Mathematics and Statistics, Probabilities, Stochastics, Probability Theory, Probability and statistics, Differenzialrechnung mehrere Variablen |
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.