Fr. 69.00

Linear Algebra - From the Beginnings to the Jordan Normal Forms

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

The purpose of this book is to explain linear algebra clearly for beginners. In doing so, the author states and explains somewhat advanced topics such as Hermitian products and Jordan normal forms. Starting from the definition of matrices, it is made clear with examples that matrices and matrix operation are abstractions of tables and operations of tables. The author also maintains that systems of linear equations are the starting point of linear algebra, and linear algebra and linear equations are closely connected. The solutions to systems of linear equations are found by solving matrix equations in the row-reduction of matrices, equivalent to the Gauss elimination method of solving systems of linear equations. The row-reductions play important roles in calculation in this book. To calculate row-reductions of matrices, the matrices are arranged vertically, which is seldom seen but is convenient for calculation. Regular matrices and determinants of matrices are defined and explained. Furthermore, the resultants of polynomials are discussed as an application of determinants. Next, abstract vector spaces over a field K are defined. In the book, however, mainly vector spaces are considered over the real number field and the complex number field, in case readers are not familiar with abstract fields. Linear mappings and linear transformations of vector spaces and representation matrices of linear mappings are defined, and the characteristic polynomials and minimal polynomials are explained. The diagonalizations of linear transformations and square matrices are discussed, and inner products are defined on vector spaces over the real number field. Real symmetric matrices are considered as well, with discussion of quadratic forms. Next, there are definitions of Hermitian inner products. Hermitian transformations, unitary transformations, normal transformations and the spectral resolution of normal transformations and matrices are explained. The book ends withJordan normal forms. It is shown that any transformations of vector spaces over the complex number field have matrices of Jordan normal forms as representation matrices.

List of contents

Preface.- 1. Matrices.- 2. Linear Equations.- 3. Determinants.- 4. Vector Spaces.- 5. Linear Mappings.- 6. Inner Product Spaces.- 7. Hermitian Inner Product Spaces.- 8. Jordan Normal Forms.-Notation.- Answers to Exercises.- References.- Index of Theorems.- Index.

About the author










The author is currently Professor Emeritus at Hokkaido University. He is also the author of Modular Forms (published by Springer) in 1989. 

Product details

Authors Toshitsune Miyake
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.09.2023
 
EAN 9789811669965
ISBN 978-981-1669-96-5
No. of pages 362
Dimensions 155 mm x 20 mm x 235 mm
Illustrations XVII, 362 p. 15 illus., 2 illus. in color.
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.