Fr. 238.00

Computational Modelling of Molecular Nanomagnets

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This book summarizes the state-of-the-art advances in the area of computational modelling of molecule-based magnets. Nowadays, various computational tools based on DFT, ab initio methods and other techniques are gaining attention in molecular nanomagnets and are successfully used to solve several outstanding problems in this area. This contributed volume discusses the theoretical foundation of the modelling of molecular magnets, starting from fitting the experimental magnetic data of very large molecules to the theory of pseudo-spin Hamiltonian approach and spin-phonon relaxations mechanisms, while it also presents examples of contemporary applications of both transition metal and lanthanide molecular magnets. In addition, the transport characteristics of molecules when placed at an interface and how these assemble on surfaces are also reviewed. This book is a great tool for researchers working in the fields of molecular magnetism and computational/theoretical chemistry and will also benefit graduate students specializing in physical-inorganic chemistry and molecular modelling.
Chapter 6 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

List of contents

Ab initio investigation of anisotropic magnetism and magnetization blocking in metal complexes.- Analytical derivations for the description of magnetic anisotropy in transition metal complexes.- Calculations of Magnetic Exchange in Multinuclear Compounds.- Exact diagonalization techniques for quantum spin systems.- Modeling magnetic properties of actinide complexes.- Spin-Phonon Relaxation in Magnetic Molecules: Theory, Predictions and Insights.- Ab initio Modelling of Lanthanide Based Molecular Magnets: Where to from Here?.- Molecular Magnets on Surfaces: in silico recipes for a successful marriage.- Theoretical Approaches for Electron Transport through Magnetic Molecules.

About the author










Prof. Gopalan Rajaraman is a Institute Chair Professor at the Department of Chemistry of the Indian Institute of Technology Bombay, Mumbai, India. His research focuses on modelling the magnetic properties of molecular magnets, using DFT and ab initio methods. Prof. Rajaraman has published more than 200 research articles in lanthanide magnets, {3d-4f} SMMs, transition metalsingle-ion magnets, polynuclear single molecule magnets etc. Recently his group is utilizing DFT and ab initio methods to predict robust SMMs based on coordination and endohedral fullerene molecules, many of which are proved by experiments.


Product details

Assisted by Gopalan Rajaraman (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 08.08.2023
 
EAN 9783031310379
ISBN 978-3-0-3131037-9
No. of pages 499
Dimensions 155 mm x 27 mm x 235 mm
Illustrations XII, 499 p. 181 illus., 172 illus. in color.
Series Challenges and Advances in Computational Chemistry and Physics
Subject Natural sciences, medicine, IT, technology > Chemistry > Inorganic chemistry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.