Read more
Informationen zum Autor Curtins Consulting Engineers is a medium sized firm of structural engineers with 11 offices in the UK. They are well known for their work on foundations and have also authored another book with Blackwell Structural Masonry Designers' Manual (third edition due 2005). Dave Easterbrook - Lecturer, School of Engineering, University of Plymouth. Klappentext This major handbook covers the structural use of brick and blockwork. A major feature is a series of step-by-step design examples of typical elements and buildings. The book has been revised to include updates to the code of practice BS 5628:2000-2 and the 2004 version of Part A of the Building Regulations. New information on sustainability issues, innovation in masonry, health and safety issues and technical developments has been added. Zusammenfassung This major handbook covers the structural use of brick and blockwork. A major feature is a series of step-by-step design examples of typical elements and buildings. The book has been revised to include updates to the code of practice BS 5628:2000-2 and the 2004 version of Part A of the Building Regulations. Inhaltsverzeichnis Chapter 1 Introduction; 1.1 Present structural forms; 1.2 Examples of structural layout suiting masonry; 1.3 Reinforced and post-tensioned masonry; 1.4 Arches and vaults; 1.5 The robustness of masonry structures; 1.6 Prefabrication; 1.7 Future tradesmen; 1.8 Engineering education; Chapter 2 Advantages & disadvantages of structural masonry; 2.1 Engineering education; 2.1.1 Cost; 2.1.2 Speed of erection; 2.1.3 Aesthetics; 2.1.4 Durability; 2.1.5 Sound insulation; 2.1.6 Thermal insulation; 2.1.7 Fire resistance and accidental damage; 2.1.8 Capital and current energy requirements; 2.1.9 Resistance to movement; 2.1.10 Repair and maintenance; 2.1.11 Ease of combination with other materials; 2.1.12 Availability of materials and labour; 2.1.13 Recyclability; 2.2 Disadvantages; 2.2.1 Lack of education in masonry; 2.2.2 Increase in obstructed area over steel and reinforced concrete; 2.2.3 Problems with some isolated details; 2.2.4 Foundations; 2.2.5 Large openings; 2.2.6 Beams and slabs; 2.2.7 Control joints; 2.2.8 Health & safety considerations; Chapter 3 Design philosophy; 3.1 Strength of material; 3.2 Exploitation of cross-section; 3.3 Exploitation of essential building elements; Chapter 4 Limit state design; Chapter 5 Basis of design (1): vertical loading; 5.1 Compressive strength of masonry; 5.2 Characteristic strength and characteristic load; 5.3 Partial safety factors for loads; 5.4 Characteristic compressive strength of masonry; 5.4.1 Brickwork; 5.4.2 Blockwork; 5.4.3 Natural stone masonry and random rubble masonry; 5.4.4 Alternative construction techniques; 5.5 Partial safety factors for material strength; 5.5.1 Manufacturing control (BS 5628, clause 27.2.1); 5.5.2 Construction control; 5.6 Slenderness ratio; 5.7 Horizontal and vertical lateral supports; 5.7.1 Methods of compliance: Walls - horizontal lateral supports; 5.7.2 Methods of compliance: Walls - vertical lateral supports; 5.8 Effective height or length: Walls; 5.9 Effective thickness of walls; 5.9.1 Solid walls; 5.9.2 Cavity walls; 5.10 Loadbearing capacity reduction factor; 5.11 Design compressive strength of a wall; 5.12 Columns; 5.12.1 Slenderness ratio: Columns; 5.12.2 Columns formed by openings; 5.12.3 Design strength; 5.12.4 Columns or walls or small plan area; 5.13 Eccentric loading; 5.14 Combined effect of slenderness and eccentricity of load; 5.14.1 Walls; 5.14.2 Columns; 5.15 Concentrated loads; Chapter 6 Basis of design (2): lateral loading - tensile and shear strength; 6.1 Direct tensile stress; 6.2 Characteristic flexural strength (tensile) of masonry; 6.2.1 Orthogonal ration; 6.3 Moments of resistance: General; 6.3.1 Moments of resistance; uncracked sections; 6.3.2 Moments of resistance; Cracked sections; 6.4 Cavity Walls; 6.4.1 Vertical twist ...