Fr. 196.00

Biomedical Signal Analysis - A Case-Study Approach

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

This text is an authoritative assessment of the problems and applications of biomedical signals, rooted in practical case studies. It is a practical, hands-on field guide to this constantly evolving technology, focusing on the diagnostic challenges that medical professionals continue to face.

List of contents

Dedication.
Preface.

About the Author.

Acknowledgments.

Symbols and Abbreviations.

1 Introduction to Biomedical Signals.

1.1 The Nature of Biomedical Signals.

1.2 Examples of Biomedical Signals.

1.3 Objectives of Biomedical Signal Analysis.

1.4 Difficulties in Biomedical Signal Analysis.

1.5 Computer-aided Diagnosis.

1.6 Remarks.

1.7 Study Questions and Problems.

1.8 Laboratory Exercises and Projects.

2 Concurrent, Coupled, and Correlated Processes.

2.1 Problem Statement.

2.2 Illustration of the Problem with Case-studies.

2.3 Application: Segmentation of the PCG.

2.4 Remarks.

2.5 Study Questions and Problems.

2.6 Laboratory Exercises and Projects.

3 Filtering for Removal of Artifacts.

3.1 Problem Statement.

3.2 Illustration of the Problem with Case-studies.

3.3 Time-domain Filters.

3.4 Frequency-domain Filters.

3.5 Optimal Filtering: The Wiener Filter.

3.6 Adaptive Filters for Removal of Interference.

3.7 Selecting an Appropriate Filter.

3.8 Application: Removal of Artifacts in the ECG.

3.9 Application: Maternal - Fetal ECG.

3.10 Application: Muscle-contraction Interference.

3.11 Remarks.

3.12 Study Questions and Problems.

3.13 Laboratory Exercises and Projects.

4 Event Detection.

4.1 Problem Statement.

4.2 Illustration of the Problem with Case-studies.

4.3 Detection of Events and Waves.

4.4 Correlation Analysis of EEG channels.

4.5 Cross-spectral Techniques.

4.6 The Matched Filter.

4.7 Detection of the P Wave.

4.8 Homomorphic Filtering.

4.9 Application: ECG Rhythm Analysis.

4.10 Application: Identification of Heart Sounds.

4.11 Application: Detection of the Aortic Component of S2.

4.12 Remarks.

4.13 Study Questions and Problems.

4.14 Laboratory Exercises and Projects.

5 Waveshape and Waveform Complexity.

5.1 Problem Statement.

5.2 Illustration of the Problem with Case-studies.

5.3 Analysis of Event-related Potentials.

5.4 Morphological Analysis of ECG Waves.

5.5 Envelope Extraction and Analysis.

5.6 Analysis of Activity.

5.7 Application: Normal and Ectopic ECG Beats.

5.8 Application: Analysis of Exercise ECG.

5.9 Application: Analysis of Respiration.

5.10 Application: Correlates of Muscular Contraction.

5.11 Remarks.

5.12 Study Questions and Problems.

5.13 Laboratory Exercises and Projects.

6 Frequency-domain Characterization.

6.1 Problem Statement.

6.2 Illustration of the Problem with Case-studies.

6.3 The Fourier Spectrum.

6.4 Estimation of the Power Spectral Density Function.

6.5 Measures Derived from PSDs.

6.6 Application: Evaluation of Prosthetic Valves.

6.7 Remarks.

6.8 Study Questions and Problems.

6.9 Laboratory Exercises and Projects.

7 Modeling Biomedical Systems.

7.1 Problem Statement.

7.2 Illustration of the Problem.

7.3 Point Processes.

7.4 Parametric System Modeling.

7.5 Autoregressive or All-pole Modeling.

7.6 Pole-zero Modeling.

7.7 Electromechanical Models of Signal Generation.

7.8 Application: Heart-rate Variability.

7.9 Application: Spectral Modeling and Analysis of PCG Signals.

7.10 Application: Coronary Artery Disease.

7.11 Remarks.

7.12 Study Questions and Problems.

7.13 Laboratory Exercises and Projects.

8 Analysis of Nonstationary Signals.

8.1 Problem Statement.

8.2 Illustration of the Problem with Case-studies.

8.3 Time-variant Systems.

8.4 Fixed Segmentation.

8.5 Adaptive Segmentation.

8.6 Use of Adaptive Filters for Segmentation.

8.7 Application: Adaptive Segmentation of EEG Signals.

8.8 Application: Adaptive Segmentation of PCG Signals.

8.9 Application: Time-varying Analysis of Heart-rate Variability.

8.10 Remarks.

8.11 Study Questions and Problems.

8.12 Laboratory Exercises and Projects.

9 Pattern Classification and Diagnostic Decision.

9.1 Problem Statement.

9.2 Illustration of the Problem with

Report

"In addition to serving as an excellent text in biomedical signal processing, this book can serve as a great reference source...there is a great need for a book on biomedical signal processing...this easy to follow book fills that need." ( Annals of Biomedical Engineering , July 2002)
"This book takes a problem-solving approach to biomedical signal analysis." ( IEEE Signal Processing Magazine , Vol. 19, No. 4, July 2002)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.