Fr. 27.90

Tehnika glubokogo raspoznawaniq lic dlq raspoznawaniq lic - Ispol'zowanie nejronnoj seti

Russian · Paperback / Softback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more










V poslednee desqtiletie nablüdaetsq tendenciq k neumolimomu uniwersal'nomu harakteru, kogda ubeditel'nye i trebuüschie minimal'nyh usilij sistemy registracii, bez somneniq, koordiniruütsq w mobil'nyh telefonah, awtomobilqh, terapewticheskih instrumentah i pochti w kazhdoj chasti nashej zhizni. Raspoznawanie lic - äto zadanie, kotoroe lüdi wypolnqüt regulqrno i legko w swoej powsednewnoj zhizni. Process raspoznawaniq lic wklüchaet w sebq izuchenie chert lica na izobrazhenii, raspoznawanie ätih chert i srawnenie ih s odnim iz mnozhestwa lic w baze dannyh. Suschestwuet mnozhestwo algoritmow, sposobnyh wypolnqt' raspoznawanie lic, takih kak: Analiz glawnyh komponent, Diskretnoe kosinusnoe preobrazowanie, metody 3D raspoznawaniq, metod wejwletow Gabora i t.d. Znachimost' sistem raspoznawaniq lic wozrosla w poslednie neskol'ko desqtiletij.

About the author










Gurpreet Kaur, Coordinator of School & Assistant Professor (Agriculture) School of Agriculture & Natural Sciences, CT University, Punjab.Jimmy Singla, Professor & Head of School of Engineering and Technology, CT University, Punjab.Danish Meiraj, Working as an Assistant Professor - School of Engineering and Technology, CT University, Punjab.

Product details

Authors Abhishek Bhardwaj, Gurpreet Kaur, Amarpreet Singh
Publisher Sciencia Scripts
 
Languages Russian
Product format Paperback / Softback
Released 01.07.2023
 
EAN 9786206203971
ISBN 9786206203971
No. of pages 64
Subject Social sciences, law, business > Business > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.