Read more
Informationen zum Autor Dr Chris Solomon, Applied Optics Group, School of Physical Sciences, The University of Kent, Canterbury, Kent, UK. Dr Stuart Gibson, VisionMetric, Canterbury, Kent, UK. Klappentext This is an introductory to intermediate level text on the science of image processing, which employs the Matlab programming language to illustrate some of the elementary, key concepts in modern image processing and pattern recognition. The approach taken is essentially practical and the book offers a framework within which the concepts can be understood by a series of well chosen examples, exercises and computer experiments, drawing on specific examples from within science, medicine and engineering.Clearly divided into eleven distinct chapters, the book begins with a fast-start introduction to image processing to enhance the accessibility of later topics. Subsequent chapters offer increasingly advanced discussion of topics involving more challenging concepts, with the final chapter looking at the application of automated image classification (with Matlab examples) .Matlab is frequently used in the book as a tool for demonstrations, conducting experiments and for solving problems, as it is both ideally suited to this role and is widely available. Prior experience of Matlab is not required and those without access to Matlab can still benefit from the independent presentation of topics and numerous examples.* Features a companion website www.wiley.com/go/solomon/fundamentals containing a Matlab fast-start primer, further exercises, examples, instructor resources and accessibility to all files corresponding to the examples and exercises within the book itself.* Includes numerous examples, graded exercises and computer experiments to support both students and instructors alike. Zusammenfassung Fundamentals of Digital Image Processing is an introductory text on the science of image processing. The stand-alone text employs the Matlab programming language to illustrate some of the elementary, key concepts in modern image processing and pattern recognition, drawing on specific examples from within science, medicine, and electronics. Inhaltsverzeichnis Preface xi Using the book website xv 1 Representation 1 1.1 What is an image? 1 1.1.1 Image layout 1 1.1.2 Image colour 2 1.2 Resolution and quantization 3 1.2.1 Bit-plane splicing 4 1.3 Image formats 5 1.3.1 Image data types 6 1.3.2 Image compression 7 1.4 Colour spaces 9 1.4.1 Rgb 10 1.4.1.1 RGB to grey-scale image conversion 11 1.4.2 Perceptual colour space 12 1.5 Images in Matlab 14 1.5.1 Reading, writing and querying images 14 1.5.2 Basic display of images 15 1.5.3 Accessing pixel values 16 1.5.4 Converting image types 17 Exercises 18 2 Formation 21 2.1 How is an image formed? 21 2.2 The mathematics of image formation 22 2.2.1 Introduction 22 2.2.2 Linear imaging systems 23 2.2.3 Linear superposition integral 24 2.2.4 The Dirac delta or impulse function 25 2.2.5 The point-spread function 28 2.2.6 Linear shift-invariant systems and the convolution integral 29 2.2.7 Convolution: its importance and meaning 30 2.2.8 Multiple convolution: N imaging elements in a linear shift-invariant system 34 2.2.9 Digital convolution 34 2.3 The engineering of image formation 37 2.3.1 The camera 38 2.3.2 The digitization process 40 2.3.2.1 Quantization 40 2.3.2.2 Digitization hardware 42 2.3.2.3 Resolution versus performance 43 2.3.3 Noise 44 Exercises 46 3 Pixels 49 3.1 What is a pixel? 49 3.2 Operations upon pixels 50 3.2.1 Arithmetic operations on images 51 3.2.1.1 Image addition and subtraction 51 3.2.1.2 Mu...