Fr. 71.00

Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow - Konzepte, Tools und Techniken für intelligente Systeme

German · Paperback / Softback

Shipping usually within 4 to 7 working days

Description

Read more

  • Behandelt jetzt viele neue Features von Scikit-Learn sowie die Keras-Tuner-Bibliothek und die NLP-Bibliothek Transformers von Hugging Face
  • Führt Sie methodisch geschickt in die Basics des Machine Learning mit Scikit-Learn ein und vermittelt darauf aufbauend Deep-Learning-Techniken mit Keras und TensorFlow 
  • Mit zahlreiche Übungen und Lösungen

Maschinelles Lernen und insbesondere Deep Learning haben in den letzten Jahren eindrucksvolle Durchbrüche erlebt. Inzwischen können sogar Programmierer, die kaum etwas über diese Technologie wissen, mit einfachen, effizienten Werkzeugen Machine-Learning-Programme implementieren. Dieses Standardwerk verwendet konkrete Beispiele, ein Minimum an Theorie und unmittelbar einsetzbare Python-Frameworks (Scikit-Learn, Keras und TensorFlow), um Ihnen ein intuitives Verständnis der Konzepte und Tools für das Entwickeln intelligenter Systeme zu vermitteln.
In dieser aktualisierten 3. Auflage behandelt Aurélien Géron eine große Bandbreite von Techniken: von der einfachen linearen Regression bis hin zu Deep Neural Networks. Zahlreiche Codebeispiele und Übungen helfen Ihnen, das Gelernte praktisch umzusetzen. Sie benötigen lediglich etwas Programmiererfahrung, um direkt zu starten.
  • Lernen Sie die Grundlagen des Machine Learning anhand eines umfangreichen Beispielprojekts mit Scikit-Learn
  • Erkunden Sie zahlreiche Modelle, einschließlich Support Vector Machines, Entscheidungsbäume, Random Forests und Ensemble-Methoden
  • Nutzen Sie unüberwachtes Lernen wie Dimensionsreduktion, Clustering und Anomalieerkennung
  • Erstellen Sie neuronale Netzarchitekturen wie Convolutional Neural Networks, Recurrent Neural Networks, Generative Adversarial Networks, Autoencoder, Diffusionsmodelle und Transformer
  • Verwenden Sie TensorFlow und Keras zum Erstellen und Trainieren neuronaler Netze für Computer Vision, Natural Language Processing, Deep Reinforcement Learning und generative Modelle

About the author

Aurélien Géron arbeitet als Consultant für Machine Learning. Als ehemaliger Mitarbeiter von Google hat er von 2013 bis 2016 das YouTube-Team zur Klassifikation von Videos geleitet. Er war Gründer und CTO von verschiedenen Unternehmen: von Wifirst, einem führenden Wireless ISP in Frankreich; von Polyconseil, einer Beratungsfirma mit Schwerpunkt auf Telekommunikation, Medien und Strategien; und von Kiwisoft, einem Consultingunternehmen mit Schwerpunkt auf Machine Learning und Datenschutz.
Davor war er als Ingenieur in verschiedenen Bereichen tätig: Finanzen (JP Morgan und Société Générale), Verteidigung (das Department of Defense in Kanada) und Gesundheit (Bluttransfusionen). Er hat einige technische Bücher veröffentlicht (zu C++, WiFi und Internetarchitekturen) und war Dozent für Informatik in einer französischen Ingenieursschule.
Sonstige wissenswerte Dinge: Er hat seinen drei Kindern beigebracht, mit den Fingern binär zu zählen (bis 1023), hat Mikrobiologie und Evolutionsgenetik studiert, bevor er sich der Softwareentwicklung zugewandt hat, und sein Fallschirm ging bei seinem zweiten Absprung nicht auf.

Summary

Aktualisierte und erweiterte 3. Auflage des Bestsellers zu TensorFlow und Deep Learning

  • Behandelt jetzt viele neue Features von Scikit-Learn sowie die Keras-Tuner-Bibliothek und die NLP-Bibliothek Transformers von Hugging Face
  • Führt Sie methodisch geschickt in die Basics des Machine Learning mit Scikit-Learn ein und vermittelt darauf aufbauend Deep-Learning-Techniken mit Keras und TensorFlow 
  • Mit zahlreiche Übungen und Lösungen

Maschinelles Lernen und insbesondere Deep Learning haben in den letzten Jahren eindrucksvolle Durchbrüche erlebt. Inzwischen können sogar Programmierer, die kaum etwas über diese Technologie wissen, mit einfachen, effizienten Werkzeugen Machine-Learning-Programme implementieren. Dieses Standardwerk verwendet konkrete Beispiele, ein Minimum an Theorie und unmittelbar einsetzbare Python-Frameworks (Scikit-Learn, Keras und TensorFlow), um Ihnen ein intuitives Verständnis der Konzepte und Tools für das Entwickeln intelligenter Systeme zu vermitteln.
In dieser aktualisierten 3. Auflage behandelt Aurélien Géron eine große Bandbreite von Techniken: von der einfachen linearen Regression bis hin zu Deep Neural Networks. Zahlreiche Codebeispiele und Übungen helfen Ihnen, das Gelernte praktisch umzusetzen. Sie benötigen lediglich etwas Programmiererfahrung, um direkt zu starten.
  • Lernen Sie die Grundlagen des Machine Learning anhand eines umfangreichen Beispielprojekts mit Scikit-Learn
  • Erkunden Sie zahlreiche Modelle, einschließlich Support Vector Machines, Entscheidungsbäume, Random Forests und Ensemble-Methoden
  • Nutzen Sie unüberwachtes Lernen wie Dimensionsreduktion, Clustering und Anomalieerkennung
  • Erstellen Sie neuronale Netzarchitekturen wie Convolutional Neural Networks, Recurrent Neural Networks, Generative Adversarial Networks, Autoencoder, Diffusionsmodelle und Transformer
  • Verwenden Sie TensorFlow und Keras zum Erstellen und Trainieren neuronaler Netze für Computer Vision, Natural Language Processing, Deep Reinforcement Learning und generative Modelle

Product details

Authors Aurélien Géron
Assisted by Thomas Demmig (Translation), Kristian Rother (Translation)
Publisher dpunkt
 
Languages German
Product format Paperback / Softback
Released 01.08.2023
 
EAN 9783960092124
ISBN 978-3-96009-212-4
No. of pages 878
Dimensions 165 mm x 45 mm x 240 mm
Weight 1386 g
Illustrations komplett in Farbe
Series Animals
Subjects Natural sciences, medicine, IT, technology > IT, data processing > Programming languages

Algorithmen, Künstliche Intelligenz, KI, matplotlib, Data Science, numpy, python, machine learning, Maschinelles Lernen, Artificial Intelligence, Deep Learning, Neuronale Netze, AI, scikit-learn, Geron, TensorFlow, Statistische Datenanalyse

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.