Fr. 68.00

Applications of lie groups to - differential equations

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.

List of contents

1 Introduction to Lie Groups.- 1.1. Manifolds.- 1.2. Lie Groups.- 1.3. Vector Fields.- 1.4. Lie Algebras.- 1.5. Differential Forms.- Notes.- Exercises.- 2 Symmetry Groups of Differential Equations.- 2.1. Symmetries of Algebraic Equations.- 2.2. Groups and Differential Equations.- 2.3. Prolongation.- 2.4. Calculation of Symmetry Groups.- 2.5. Integration of Ordinary Differential Equations.- 2.6. Nondegeneracy Conditions for Differential Equations.- Notes.- Exercises.- 3 Group-Invariant Solutions.- 3.1. Construction of Group-Invariant Solutions.- 3.2. Examples of Group-Invariant Solutions.- 3.3. Classification of Group-Invariant Solutions.- 3.4. Quotient Manifolds.- 3.5. Group-Invariant Prolongations and Reduction.- Notes.- Exercises.- 4 Symmetry Groups and Conservation Laws.- 4.1. The Calculus of Variations.- 4.2. Variational Symmetries.- 4.3. Conservation Laws.- 4.4. Noether's Theorem.- Notes.- Exercises.- 5 Generalized Symmetries.- 5.1. Generalized Symmetries of Differential Equations.- 5.2. Récursion Operators, Master Symmetries and Formal Symmetries.- 5.3. Generalized Symmetries and Conservation Laws.- 5.4. The Variational Complex.- Notes.- Exercises.- 6 Finite-Dimensional Hamiltonian Systems.- 6.1. Poisson Brackets.- 6.2. Symplectic Structures and Foliations.- 6.3. Symmetries, First Integrals and Reduction of Order.- Notes.- Exercises.- 7 Hamiltonian Methods for Evolution Equations.- 7.1. Poisson Brackets.- 7.2. Symmetries and Conservation Laws.- 7.3. Bi-Hamiltonian Systems.- Notes.- Exercises.- References.- Symbol Index.- Author Index.

Summary

Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice.

Product details

Authors Peter Olver, Peter J Olver, Peter J. Olver
Publisher Springer International Publishing AG
 
Languages English
Product format Paperback / Softback
Released 01.01.2000
 
EAN 9780387950006
ISBN 978-0-387-95000-6
Dimensions 157 mm x 233 mm x 30 mm
Series Graduate Texts in Mathematics
Graduate Texts in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.