Share
Fr. 198.00
Gerlind Plonka, Gerlind Plonka-Hoch, Daniel Potts, Gabriel Steidl, Gabriele Steidl, Gabriele et Steidl...
Numerical Fourier Analysis
English · Hardback
Shipping usually within 2 to 3 weeks (title will be printed to order)
Description
New technological innovations and advances in research in areas such as spectroscopy, computer tomography, signal processing, and data analysis require a deep understanding of function approximation using Fourier methods. To address this growing need, this monograph combines mathematical theory and numerical algorithms to offer a unified and self-contained presentation of Fourier analysis.
The first four chapters of the text serve as an introduction to classical Fourier analysis in the univariate and multivariate cases, including the discrete Fourier transforms, providing the necessary background for all further chapters. Next, chapters explore the construction and analysis of corresponding fast algorithms in the one- and multidimensional cases. The well-known fast Fourier transforms (FFTs) are discussed, as well as recent results on the construction of the nonequispaced FFTs, high-dimensional FFTs on special lattices, and sparse FFTs. An additional chapter is devoted to discrete trigonometric transforms and Chebyshev expansions. The final two chapters consider various applications of numerical Fourier methods for improved function approximation, including Prony methods for the recovery of structured functions.
This new edition has been revised and updated throughout, featuring new material on a new Fourier approach to the ANOVA decomposition of high-dimensional trigonometric polynomials; new research results on the approximation errors of the nonequispaced fast Fourier transform based on special window functions; and the recently developed ESPIRA algorithm for recovery of exponential sums, among others.
Numerical Fourier Analysis will be of interest to graduate students and researchers in applied mathematics, physics, computer science, engineering, and other areas where Fourier methods play an important role in applications.
List of contents
Chapter. 1. Fourier series.- Chapter. 2. Fourier transform.- Chapter. 3. Discrete Fourier transforms.- Chapter. 4. Multidimensional Fourier methods.- Chapter. 5. Fast Fourier transforms.- Chapter. 6. Chebyshev methods and fast DCT algorithms.- Chapter. 7. Fast Fourier transforms for nonequispaced data.- Chapter. 8. High dimensional FFT.- Chapter. 9. Numerical applications of DFT.- Chapter. 10. Prony method for reconstruction of structured functions.- Appendix A.- Index.- References.
About the author
¿Gerlind Plonka received the Ph.D. degree in mathematics and the Habilitation degree from the University of Rostock in 1993 and 1996, respectively. She was an Associate Professor of applied analysis at the University of Duisburg-Essen, Germany, from January 1998 to June 2010. Since July 2010, she works as a Full Professor of applied mathematics at the University of Göttingen, Germany. Her current research interests include numerical methods of Fourier analysis, wavelet theory, and inverse problems with applications to signal and image processing.
Product details
Authors | Gerlind Plonka, Gerlind Plonka-Hoch, Daniel Potts, Gabriel Steidl, Gabriele Steidl, Gabriele et Steidl, Manfred Tasche |
Publisher | Springer, Berlin |
Languages | English |
Product format | Hardback |
Released | 01.08.2023 |
EAN | 9783031350047 |
ISBN | 978-3-0-3135004-7 |
No. of pages | 664 |
Dimensions | 155 mm x 40 mm x 235 mm |
Illustrations | XVIII, 664 p. 52 illus., 30 illus. in color. |
Series |
Applied and Numerical Harmonic Analysis |
Subject |
Natural sciences, medicine, IT, technology
> Mathematics
> Analysis
|
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.