Fr. 51.50

How to Think About Algorithms

English · Paperback / Softback

Shipping usually within 4 to 7 working days

Description

Read more










"The second edition of this student-friendly textbook now includes over 150 new exercises, key concept summaries and a chapter on machine learning algorithms. Its approachability and clarity make it ideal as both a main course text or as a supplementary book for students who find other books challenging"--

List of contents

Preface; Introduction; Part I. Iterative Algorithms and Loop Invariants: 1. Iterative algorithms: measures of progress and loop invariants; 2. Examples using more-of-the-input loop invariant; 3. Abstract data types; 4. Narrowing the search space: binary search; 5. Iterative sorting algorithms; 6. Euclid's GCD algorithm; 7. The loop invariant for lower bounds; 8. Key concepts summary: loop invariants and iterative algorithms; 9. Additional exercises: Part I; 10. Partial solutions to additional exercises: Part I; Part II. Recursion: 11. Abstractions, techniques, and theory; 12. Some simple examples of recursive algorithms; 13. Recursion on trees; 14. Recursive images; 15. Parsing with context-free grammars; 16. Key concepts summary: recursion; 17. Additional exercises: Part II; 18. Partial solutions to additional exercises: Part II; Part III. Optimization Problems: 19. Definition of optimization problems; 20. Graph search algorithms; 21. Network flows and linear programming; 22. Greedy algorithms; 23. Recursive backtracking; 24. Dynamic programming algorithms; 25. Examples of dynamic programming; 26. Reductions and NP-completeness; 27. Randomized algorithms; 28. Key concepts summary: greedy algorithms and dynamic programmings; 29. Additional exercises: Part III; 30. Partial solutions to additional exercises: Part III; Part IV. Additional Topics: 31. Existential and universal quantifiers; 32. Time complexity; 33. Logarithms and exponentials; 34. Asymptotic growth; 35. Adding-made-easy approximations; 36. Recurrence relations; 37. A formal proof of correctness; 38. Additional exercises: Part IV; 39. Partial solutions to additional exercises: Part IV; Exercise Solutions; Conclusion; Index.

About the author

Jeff Edmonds is Professor in the Department of Electrical Engineering and Computer Science at York University, Canada.

Summary

The second edition of this student-friendly textbook now includes over 150 new exercises, key concept summaries and a chapter on machine learning algorithms. Its approachability and clarity make it ideal as both a main course text or as a supplementary book for students who find other books challenging.

Foreword

Exceptionally student-friendly, now with over 150 new exercises, key concept summaries, and a new chapter on machine learning algorithms.

Product details

Authors Jeff Edmonds, Jeff (York University Edmonds
Publisher Cambridge University Press ELT
 
Languages English
Product format Paperback / Softback
Released 30.11.2023
 
EAN 9781009302135
ISBN 978-1-0-0930213-5
No. of pages 464
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

COMPUTERS / General, algorithms and data structures, Algorithms & data structures, Mathematical theory of computation

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.