Fr. 196.00

Halide Perovskite Semiconductors - Structures, Characterization, Properties, and Phenomena

English · Hardback

Shipping usually within 1 to 3 working days

Description

Read more

This book covers the most fundamental topics on halide perovskites including, but not limited to, crystal/defect theory, crystal chemistry, heterogeneity, grain boundaries, single-crystals/thin-films/nanocrystals synthesis, photophysics, solid-state ionics, spin physics, chemical (in)stability, carrier dynamics, surface and interfaces, lower-dimensional structures, and structural/functional characterizations. Discussions on the fundamentals of halide perovskites will expand the basic science fields of physics, chemistry, and materials science themselves. The readers can find solutions to the technological issues and challenges based on the fundamental knowledge gained from this book.

List of contents

INTRODUCTION TO PEROVSKITE
Evolution of Perovskite
Structure of Perovskite
Property and Application of Perovskite
Summary and Outlook
 
HALIDE PEROVSKITE SINGLE CRYSTALS
Introduction
Crystal Structure
Synthesis Methods
Optoelectronic Properties of Halide Perovskite Single Crystals
Applications
 
HALIDE PEROVSKITE NANOCRYSTALS
Introduction
Methodology
Quantum Confinement Effect
Solution-Processed Halide Exchange
Post-Synthesis Defect-Recovery
Different Shapes of the Nanocrystals
Doping in Perovskite Nanocrystals
Lead-Free Perovskite Nanocrystals
Summary
 
DIMENSIONALITY MODULATION IN HALIDE PEROVSKITES
Classification of Low-Dimensional Perovskites
Synthesis and Characterization of Morphological Low-Dimensional (ABX3) Halide Perovskites
Synthesis and Characterization of Molecular Low-Dimensional (non-ABX3) Halide Perovskites
Applications of Low-Dimensional Halide Perovskites
Current Challenges and Prospects of Low-Dimensional Halide Perovskites
 
HALIDE DOUBLE PEROVSKITES
Introduction. Motivation and Relevance
Structure and Definition. What is and What is not a Halide Double Perovskite? Types of Double Perovskites
History. Oxide Double Perovskites and Elpasolites
Properties. Electronic and Optical (Band Contributions) and Stability
Applications in Solar Cells and LEDs
Other Applications
Outlook and Future Avenues of Research
 
TIN HALIDE PEROVSKITE SOLAR CELLS
Tin Perovskite Properties
Perovskite Composition Engineering
Additives Manipulation
Device Architecture Engineering
Conclusion
 
FUNDAMENTALS AND SYNTHESIS METHODS OF METAL HALIDE PEROVSKITE THIN FILMS
Introduction
Fundamentals of MHPs Thin Films
Thin Film Growth Mechanism
One-Step Growth
Two-Step Growth
Scalable Growth Methods
Post-Deposition Treatments
Summary
 
FIRST PRINCIPLES ATOMISTIC THEORY OF HALIDE PEROVSKITES
Introduction
Structural Properties
Optoelectronic Properties and Charge Carrier Transport
 
COMPARING THE CHARGE DYNAMICS OF MAPbBr3 TO MAPbI3 USING MICROWAVE PHOTOCONDUCTANCE MEASUREMENTS
Time-Resolved Microwave Conductivity
Global Modelling of TRMC Data
TRMC Measurements on MAPbI3 and MAPbBr3
TRMC Measurements on MAPbI3 and MAPbBr3 with Charge Selective Contacts
 
HOT CARRIERS IN HALIDE PEROVSKITES
Introduction
Hot Carrier Cooling Mechanisms
Slow Hot Carrier Cooling in Halide Perovskites
Utilizing Hot Carriers in Halide Perovskites
Multiple Exciton Generation
Multiple Exciton Generation Mechanisms
Efficient Multiple Exciton Generation in Halide Perovskites
Utilizing Multiple Exciton Generation in Halide Perovskites
Conclusion and Outlook
 
IONIC TRANSPORT IN PEROVSKITE SEMICONDUCTORS
Theoretical Basis of Ionic Transport
Characterizations of Ionic Transport
Mobile Ions in Perovskite Film under Electric Field
The Factors Affecting Ionic Transport in Perovskites
The Impact of Ion Migration on Perovskite Films and Devices
 
LIGHT EMISSION OF HALIDE PEROVSKITES
Introduction
Charge Carrier Recombination in Lead Halide Perovskites
Photoinduced Effects on Charge Carrier Recombination
Lasing in Lead Halide Perovskites
Conclusions
 
EPITAXY AND STRAIN ENGINEERING OF HALIDE PEROVSKITES
Introduction
Epitaxy of Thin Film and Nanostructures
Strain Engineering: Theoretical and Experimental Progresses
Opportunities and Challenges
 
ELECTRON MICROSCOPY OF PEROVSKITE SOLAR CELL MATERIALS
Introduction
Fundamentals of Electron Microscopy
Signal Generation
SEM
TEM
Conclusions
 
IN SITU CHARACTERIZATION OF HALIDE PEROVSKITE SYNTHESIS
Introduction
Fundamentals of X-Ray Scattering and Fluorescence Techniques
In Situ Optical Spectroscopy
Examples of In Situ Multimodal Characterization

About the author










Yuanyuan 'Alvin' Zhou is Assistant Professor in Hong Kong Baptist University (HKBU). He is leading the Advanced Semiconductor Laboratory in the Department of Physics at HKBU.
 
Iván Mora Seró is Full Professor in The University Jaume I (UJI), Spain. He is leading the Group of Advanced Semiconductors at Institute of Advanced Materials (INAM) of UJI. He has been granted with different Spanish and international fellowships and awards.
 


Product details

Assisted by Mora Seró (Editor), Iván Mora Seró (Editor), Ivan Mora-Sero (Editor), Mora-Seró (Editor), Iván Mora-Seró (Editor), Yuanyuan Zhou (Editor)
Publisher Wiley-VCH
 
Languages English
Product format Hardback
Released 04.10.2023
 
EAN 9783527348091
ISBN 978-3-527-34809-1
No. of pages 512
Dimensions 177 mm x 32 mm x 252 mm
Weight 1140 g
Illustrations 2 Farbabb.
Subjects Natural sciences, medicine, IT, technology > Chemistry
Non-fiction book > Nature, technology > Natural science

Chemie, Werkstoffprüfung, Halbleiter, Festkörperchemie, chemistry, Materialwissenschaften, Materials science, Electrical & Electronics Engineering, Elektrotechnik u. Elektronik, Components & Devices, Komponenten u. Bauelemente, Solid State Chemistry, Materials Characterization, Perowskit

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.