Fr. 57.50

Eine Leistungsvergleichsstudie zur Vorhersage von Waldbränden - Verwenden von maschinellen Lerntechniken

German · Paperback / Softback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

Waldbrände sind unkontrollierte und nicht vorgeschriebene Verbrennungen der natürlichen Vegetation, die eine große Gefahr für die Umwelt darstellen. Da es sich um ein natürliches Phänomen handelt, ist es für den Menschen unmöglich, es zu verhindern. Es besteht ein Bedarf an frühzeitiger Vorhersage, schneller Erkennung und sofortigem Handeln, um solche Phänomene zum Schutz des Ökosystems zu kontrollieren. In diesem Buch wird ein Vorhersagemodell abgeleitet, das in der Lage ist, Waldbrände mit Hilfe von Soft-Computing und maschinellen Lerntechniken vorherzusagen. Der Datensatz besteht aus 517 Datensätzen von Zeitreihen für den Naturpark Montesinho in Portugal. Um einige der kritischen Muster zu finden und die Brandregionen zu segmentieren (unter Verwendung von Clustern), werden PCA und Clustermethoden mittels K-means auf den Datensatz angewendet. Fünf Soft-Computing-Techniken, nämlich MPNN, PNN, KNN, RBF und SVM, werden gleichzeitig angewendet. Für die Ausführung der Algorithmen werden Python-Bibliotheken wie Scikit-learn, Pandas, Matplotlib und Seaborn verwendet. Schließlich wird jede Soft-Computing-Technik anhand von Bewertungsparametern wie MSE, RMSE, MAE, RAE und IG bewertet und das geeignete Modell mit den besten Werten ermittelt.

About the author










Balamurugan R. promovierte 2016 in Information and Communication Engineering an der Anna University, Chennai. Derzeit arbeitet er als Associate Professor an der School of Computer Science and Engineering am Vellore Institute of Technology alias VIT, Vellore, Indien. Er verfügt über mehr als 10 Jahre Erfahrung in Wissenschaft und Forschung.

Product details

Authors Dr Balamurugan R, Balamurugan R., Dr. Balamurugan R.
Publisher Verlag Unser Wissen
 
Languages German
Product format Paperback / Softback
Released 01.03.2023
 
EAN 9786205828946
ISBN 9786205828946
No. of pages 52
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.