Fr. 90.00

Fundamentals of Data Observability - Implement Trustworthy End-To-End Data Solutions

English · Paperback / Softback

Shipping usually within 3 to 5 weeks

Description

Read more










Quickly detect, troubleshoot, and prevent a wide range of data issues through data observability, a set of best practices that enables data teams to gain greater visibility of data and its usage. If you're a data engineer, data architect, or machine learning engineer who depends on the quality of your data, this book shows you how to focus on the practical aspects of introducing data observability in your everyday work. Author Andy Petrella helps you build the right habits to identify and solve data issues, such as data drifts and poor quality, so you can stop their propagation in data applications, pipelines, and analytics. You'll learn ways to introduce data observability, including setting up a framework for generating and collecting all the information you need.

About the author










Andy Petrella has been in the data industry for almost 20 years, starting his career as a software engineer and data miner in the GIS space. He has evangelized big data for more than a decade, especially Apache Spark for which he created the Spark-Notebook (that has 3100 stars on Github). During his time evangelizing Spark and helping hundreds of companies in the US and in EU work on their data pipelines and models, he has witnessed the lack of visibility and control of data jobs after they are deployed in production. Since 2015, he has been talking to tech and data-savvy people to build a sustainable solution for this problem. That is: "how to make data observable" in a way that can be adopted smoothly by any data practitioner. Today, he is regularly invited to companies to educate their data teams, whilst running Kensu, which has more than 50 years of total development time dedicated to building the set tools to help data engineers and their peers to build trust in what they deliver. Also he is in ongoing talks with advocates such as Gartner to create a definition of Data Observability that refers to all its important facets. Finally, he has written books, blogs, slides, training materials, etc. since 2013, including many materials with O'Reilly.

Product details

Authors Andy Petrella, Petrella Andy
Publisher O'Reilly
 
Languages English
Product format Paperback / Softback
Released 31.08.2023
 
EAN 9781098133290
ISBN 978-1-09-813329-0
Dimensions 178 mm x 233 mm x 19 mm
Weight 482 g
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

3D graphics & modelling, COMPUTERS / Data Science / Data Modeling & Design, COMPUTERS / Business & Productivity Software / Databases, COMPUTERS / Data Science / Data Warehousing, 3D graphics and modelling

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.