Fr. 179.00

Machine Learning - Discriminative and Generative

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Machine Learning: Discriminative and Generative covers the main contemporary themes and tools in machine learning ranging from Bayesian probabilistic models to discriminative support-vector machines. However, unlike previous books that only discuss these rather different approaches in isolation, it bridges the two schools of thought together within a common framework, elegantly connecting their various theories and making one common big-picture. Also, this bridge brings forth new hybrid discriminative-generative tools that combine the strengths of both camps. This book serves multiple purposes as well. The framework acts as a scientific breakthrough, fusing the areas of generative and discriminative learning and will be of interest to many researchers. However, as a conceptual breakthrough, this common framework unifies many previously unrelated tools and techniques and makes them understandable to a larger portion of the public. This gives the more practical-minded engineer, student and the industrial public an easy-access and more sensible road map into the world of machine learning.
Machine Learning: Discriminative and Generative is designed for an audience composed of researchers & practitioners in industry and academia. The book is also suitable as a secondary text for graduate-level students in computer science and engineering.

List of contents

1. Introduction.- 2. Generative Versus Discriminative Learning.- 3. Maximum Entropy Discrimination.- 4. Extensions to Med.- 5. Latent Discrimination.- 6. Conclusion.- 7. Appendix.

Summary

Machine Learning: Discriminative and Generative covers the main contemporary themes and tools in machine learning ranging from Bayesian probabilistic models to discriminative support-vector machines. However, unlike previous books that only discuss these rather different approaches in isolation, it bridges the two schools of thought together within a common framework, elegantly connecting their various theories and making one common big-picture. Also, this bridge brings forth new hybrid discriminative-generative tools that combine the strengths of both camps. This book serves multiple purposes as well. The framework acts as a scientific breakthrough, fusing the areas of generative and discriminative learning and will be of interest to many researchers. However, as a conceptual breakthrough, this common framework unifies many previously unrelated tools and techniques and makes them understandable to a larger portion of the public. This gives the more practical-minded engineer, student and the industrial public an easy-access and more sensible road map into the world of machine learning.

Machine Learning: Discriminative and Generative is designed for an audience composed of researchers & practitioners in industry and academia. The book is also suitable as a secondary text for graduate-level students in computer science and engineering.

Additional text

From the reviews:

"This book aims to unite two powerful approaches in machine learning: generative and discriminative. … Researchers from the generative or discriminative schools will find this book a nice bridge to the other paradigm." (C. Andy Tsao, Mathematical Reviews, Issue 2005 k)

Report

From the reviews:

"This book aims to unite two powerful approaches in machine learning: generative and discriminative. ... Researchers from the generative or discriminative schools will find this book a nice bridge to the other paradigm." (C. Andy Tsao, Mathematical Reviews, Issue 2005 k)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.