Fr. 106.00

Spiking Neuron Models

English · Paperback / Softback

Shipping usually within 3 to 5 weeks

Description

Read more










This introduction to spiking neurons can be used in advanced-level courses in computational neuroscience, theoretical biology, neural modeling, biophysics, or neural networks. It focuses on phenomenological approaches rather than detailed models in order to provide the reader with a conceptual framework. The authors formulate the theoretical concepts clearly without many mathematical details. While the book contains standard material for courses in computational neuroscience, neural modeling, or neural networks, it also provides an entry to current research. No prior knowledge beyond undergraduate mathematics is required.

List of contents










1. Introduction; Part I. Single Neuron Models: 2. Detailed neuron models; 3. Two-dimensional neuron models; 4. Formal spiking neuron models; 5. Noise in spiking neuron models; Part II. Population Models: 6. Population equations; 7. Signal transmission and neuronal coding; 8. Oscillations and synchrony; 9. Spatially structured networks; Part III. Models of Synaptic Plasticity: 10. Hebbian models; 11. Learning equations; 12. Plasticity and coding; Bibliography; Index.

Summary

Aimed at courses in computational neuroscience, theoretical biology, biophysics, or neural networks, this 2002 text will suit students of physics, mathematics, or computer science, as well as biologists who are interested in mathematical modelling. A large number of worked examples are embedded in the profusely-illustrated text.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.