Fr. 68.00

A Comprehensive Approach on Sentiment Analysis & Prediction

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more










Document in the subject Computer Sciences - Artificial Intelligence, , language: English, abstract: In today scenario there is abrupt usage of microblogging sites such as Twitter for sharing of feelings and emotions towards any current hot topic, any product, services, or any event. Such opinionated data needs to be leveraged effectively to get valuable insight from that data. This research work focused on designing a comprehensive feature-based Twitter Sentiment Analysis (TSA) framework using the supervised machine learning approach with integrated sophisticated negation handling approach and knowledge-based Tweet Normalization System (TNS). We generated three real-time twitter datasets using search operators such as #Demonetization, #Lockdown, and #9pm9minutes and also used one publically available benchmark dataset SemEval-2013 to assess the viability of our comprehensive feature-based twitter sentiment analysis system on tweets. We leveraged varieties of features such as lexicon-based features, pos-based, morphological, ngrams, negation, and cluster-based features to ascertain which classifier works well with which feature group. We employed three state-of-the-art classifiers including Support Vector Machine (SVM), Decision Tree Classifier (DTC), and Naive Bayesian (NB) for our twitter sentiment analysis framework. We observed SVM to be the best performing classifier across all the twitter datasets except #9pm9minutes (DTC turned out to be the best for this dataset). Moreover, our SVM model trained on the SemEval-2013 training dataset outperformed the winning team NRC Canada of SemEval- 2013 task 2 in terms of macro-averaged F1 score, averaged on positive and negative classes only. Though state-of-the-art twitter sentiment analysis systems reported significant performance, it is still challenging to deal with some critical aspects such as negation and tweet normalization.

Product details

Authors Manu Banga
Publisher Grin Verlag
 
Languages English
Product format Paperback / Softback
Released 27.12.2022
 
EAN 9783346798602
ISBN 978-3-346-79860-2
No. of pages 196
Dimensions 148 mm x 210 mm x 14 mm
Weight 292 g
Subjects Guides
Natural sciences, medicine, IT, technology > IT, data processing > Data communication, networks

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.