Share
Fr. 146.00
Wei Dai, Kim Laine, Kristin Lauter
Protecting Privacy through Homomorphic Encryption
English · Paperback / Softback
Shipping usually within 1 to 2 weeks (title will be printed to order)
Description
This book summarizes recent inventions, provides guidelines and recommendations, and demonstrates many practical applications of homomorphic encryption. This collection of papers represents the combined wisdom of the community of leading experts on Homomorphic Encryption. In the past 3 years, a global community consisting of researchers in academia, industry, and government, has been working closely to standardize homomorphic encryption. This is the first publication of whitepapers created by these experts that comprehensively describes the scientific inventions, presents a concrete security analysis, and broadly discusses applicable use scenarios and markets. This book also features a collection of privacy-preserving machine learning applications powered by homomorphic encryption designed by groups of top graduate students worldwide at the Private AI Bootcamp hosted by Microsoft Research.
The volume aims to connect non-expert readers with thisimportant new cryptographic technology in an accessible and actionable way. Readers who have heard good things about homomorphic encryption but are not familiar with the details will find this book full of inspiration. Readers who have preconceived biases based on out-of-date knowledge will see the recent progress made by industrial and academic pioneers on optimizing and standardizing this technology. A clear picture of how homomorphic encryption works, how to use it to solve real-world problems, and how to efficiently strengthen privacy protection, will naturally become clear.
List of contents
Part 1: Introduction to Homomorphic Encryption (Dai).- Part 2: Homomorphic Encryption Security Standard: Homomorphic Encryption Security Standard (Laine).- Part 3: Applications of Homomorphic Encryption: Privacy-preserving Data Sharing and Computation Across Multiple Data Providers with Homomorphic Encryption (Troncoso-Pastoriza).- Secure and Confidential Rule Matching for Network Traffic Analysis (Jetchev).- Trusted Monitoring Service (TMS) (Scott).- Private Set Intersection and Compute (Kannepalli).- Part IV Applications of Homomorphic Encryption (at the Private AI Bootcamp): Private Outsourced Translation for Medical Data (Viand).- HappyKidz: Privacy Preserving Phone Usage Tracking (Hastings).- i-SEAL2: Identifying Spam EmAiL with SEAL (Froelicher).- PRIORIS: Enabling Secure Suicidal Ideation Detection from Speech using Homomorphic Machine Learning (Natarajan).- Gimme That Model!: A Trusted ML Model Trading Protocol (Lee).- HEalth: Privately Computing on Shared Healthcare Data (Hales).- Private Movie Recommendations for Children (Wagh S).- Privacy-Preserving Prescription Drug Management Using Homomorphic Encryption (Youmans).
About the author
Report
"Homomorphic encryption appears as a very acceptable crypto-protection solution with a high level of security, which enables the processing and exchange of data in an encrypted form. ... Protecting privacy through homomorphic encryption offers a certain level of help with this, providing readers with basic insights into homomorphic encryption, the problem environment, and certain practical solutions that have proven to be successful in this area." (F. J. Ruzic, Computing Reviews, June 2, 2023)
Product details
Assisted by | Wei Dai (Editor), Kim Laine (Editor), Kristin Lauter (Editor) |
Publisher | Springer, Berlin |
Languages | English |
Product format | Paperback / Softback |
Released | 06.01.2023 |
EAN | 9783030772895 |
ISBN | 978-3-0-3077289-5 |
No. of pages | 176 |
Dimensions | 155 mm x 10 mm x 235 mm |
Illustrations | XVI, 176 p. 35 illus., 28 illus. in color. |
Subject |
Natural sciences, medicine, IT, technology
> Mathematics
> Miscellaneous
|
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.