Fr. 83.00

Effective Kan Fibrations in Simplicial Sets

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.

List of contents

- 1. Introduction. - Part I - Types from Moore Paths. - 2. Preliminaries. - 3. An Algebraic Weak Factorisation System from a Dominance. - 4. An Algebraic Weak Factorisation System from a Moore Structure. - 5. The Frobenius Construction. - 6. Mould Squares and Effective Fibrations. - 7. -Types. - Part II Simplicial Sets. - 8. Effective Trivial Kan Fibrations in Simplicial Sets. - 9. Simplicial Sets as a Symmetric Moore Category. - 10. Hyperdeformation Retracts in Simplicial Sets. - 11. Mould Squares in Simplicial Sets. - 12. Horn Squares. - 13. Conclusion.

Product details

Authors Benno van den Berg, Eric Faber, Benno van den Berg
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 10.12.2022
 
EAN 9783031188992
ISBN 978-3-0-3118899-2
No. of pages 230
Dimensions 155 mm x 13 mm x 235 mm
Illustrations X, 230 p. 1 illus.
Series Lecture Notes in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.