Sold out

Théorie de Morse et homologie de Floer

French · Paperback / Softback

Description

Read more


Théorie de morse et homologie de floer

Cet ouvrage est une introduction aux méthodes modernes de la topologie symplectique. Il est consacré à un problème issu de la mécanique classique, la « conjecture d'Arnold », qui propose de minimiser le nombre de trajectoires périodiques de certains systèmes hamiltoniens par un invariant qui ne dépend que de la topologie de la variété symplectique dans laquelle évolue ce système.
La première partie expose la « théorie de Morse », outil indispensable de la topologie différentielle contemporaine. Elle introduit le « complexe de Morse » et aboutit aux inégalités de Morse. Cette théorie, maintenant classique, est présentée de manière détaillée car elle sert de guide pour la seconde partie, consacrée à l'« homologie de Floer », qui en est un analogue en dimension infinie. Les objets de l'étude sont alors plus compliqués et nécessitent l'introduction de méthodes d'analyse plus sophistiquées. Elles sont expliquées en détail dans cette partie. Enfin, l'ouvrage contient en appendice la présentation d'un certain nombre de résultats nécessaires à la lecture du livre dans les trois principaux domaines abordés - géométrie différentielle, topologie algébrique et analyse - auxquels le lecteur pourra se référer si besoin.
L'ouvrage est issu d'un cours de M2 donné à l'université de Strasbourg. Le texte, abondamment illustré, contient de nombreux exercices.

Product details

Authors Michèle Audin, Mihai Damian
Publisher CNRS Editions
 
Languages French
Product format Paperback / Softback
Released 02.09.2010
 
EAN 9782759805181
ISBN 978-2-7598-0518-1
No. of pages 548
Dimensions 160 mm x 230 mm x 30 mm
Weight 800 g
Series Savoirs actuels
Subject Non-fiction book > Nature, technology

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.