Fr. 198.00

Materials Interaction with Femtosecond Lasers - Theory and Ultra-Large-Scale Simulations of Thermal and Nonthermal Pheomena

English · Paperback / Softback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This book presents a unified view of the response of materials as a result of femtosecond laser excitation, introducing a general theory that captures both ultrashort-time non-thermal and long-time thermal phenomena. It includes a novel method for performing ultra-large-scale molecular dynamics simulations extending into experimental and technological spatial dimensions with ab-initio precision. For this, it introduces a new class of interatomic potentials, constructed from ab-initio data with the help of a self-learning algorithm, and verified by direct comparison with experiments in two different materials - the semiconductor silicon and the semimetal antimony.
In addition to a detailed description of the new concepts introduced, as well as giving a timely review of ultrafast phenomena, the book provides a rigorous introduction to the field of laser-matter interaction and ab-initio description of solids, delivering a complete and self-contained examination of the topic from thevery first principles. It explains, step by step from the basic physical principles, the underlying concepts in quantum mechanics, solid-state physics, thermodynamics, statistical mechanics, and electrodynamics, introducing all necessary mathematical theorems as well as their proofs. A collection of appendices provide the reader with an appropriate review of many fundamental mathematical concepts, as well as important analytical and numerical parameters used in the simulations.

List of contents

Introduction.- Ab-initio Description of Solids.- Ab-initio Description of a Fs-laser Excitation.- Ab-initio MD Simulations of the Excited Potential Energy Surface.- Empirical MD Simulations of Laser-excited Matter.

About the author










Bernd Bauerhenne conducts research in the Solid State and Ultrafast Physics Group at the Institute of Theoretical Physics of the University of Kassel. One focus of his research is the theory of ultrafast phenomena in solids and nanostructures; in particular, the description of ultrafast structural changes induced by an intense femtosecond laser. Among other things, he develops highly accurate interatomic potentials using self-learning algorithms, performs ultra-large-scale molecular dynamics simulations, and applies electronic temperature-dependent density functional theory.
He studied mathematics and physics at the University of Kassel and at the University of Luxemburg with a focus on numerics and dynamical systems in mathematics and theoretical modeling of solids in physics. He received a diploma in mathematics and a diploma in physics, completing his PhD in theoretical physics at the University of Kassel.
He was awarded the Otto Braun Fund doctoral fellowship and the University of Kassel final fellowship, won the PhD student award of the Symposion X at the European Materials Research Society meeting in Strasbourg 2017, and had the honor of attending the 66th Lindau Nobel Laureate Meeting.


Product details

Authors Bernd Bauerhenne
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 27.10.2022
 
EAN 9783030851378
ISBN 978-3-0-3085137-8
No. of pages 536
Dimensions 155 mm x 26 mm x 235 mm
Illustrations XXXII, 536 p. 224 illus., 161 illus. in color.
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Atomic physics, nuclear physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.