Share
Fr. 150.00
Edward Belbruno, Belbruno Edward
Capture Dynamics and Chaotic Motions in Celestial Mechanics - With Applications to the Construction of Low Energy Transfers
English · Hardback
Shipping usually within 1 to 3 weeks (not available at short notice)
Description
Zusatztext "This is a how-to book on how to construct a low energy orbit from the earth to the moon by the man who did just that to save the Japanese space mission in 1990." ---Ken Meyer, SIAM Review Informationen zum Autor Edward Belbruno has been a Visiting Research Collaborator in the Program in Applied and Computational Mathematics at Princeton University since 1998. The author of numerous articles in professional journals in mathematics, astronomy, and aerospace engineering, he received the Laurel Award in 1999 for the salvage of a Hughes satellite in 1998 using lunar transfer. Klappentext This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel. Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions. Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering. Zusammenfassung This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel. Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions. Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for gr...
Product details
Authors | Edward Belbruno, Belbruno Edward |
Publisher | Princeton University Press |
Languages | English |
Product format | Hardback |
Released | 25.01.2004 |
EAN | 9780691094809 |
ISBN | 978-0-691-09480-9 |
No. of pages | 232 |
Subjects |
Natural sciences, medicine, IT, technology
> Technology
> General, dictionaries
Astrophysics, SCIENCE / Mechanics / General, SCIENCE / Physics / Astrophysics, Classical mechanics |
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.