Read more
Informationen zum Autor Gregory B. Baecher is the author of Reliability and Statistics in Geotechnical Engineering, published by Wiley. John T. Christian is the author of Reliability and Statistics in Geotechnical Engineering, published by Wiley. Klappentext Risikoanalyse und Zuverlässigkeitsstudien sind in Theorie und Praxis der Geotechnik von wachsender Bedeutung. Jetzt endlich gibt es auch ein Buch, das sich ausführlich mit diesem Thema beschäftigt und das sich mit Sicherheit einen Platz in geotechnischen Studiengängen und in der Praxis erobern wird. Abgehandelt werden hier auch Themen, zu denen man ansonsten nur spärliche Informationen findet, wie die räumliche Variabilität und stochastische Eigenschaften geologischer Materialien. Zusammenfassung Risk and reliability analysis is an area of growing importance in geotechnical engineering, where many variables have to be considered. Statistics, reliability modelling and engineering judgement are employed together to develop risk and decision analyses for civil engineering systems. Inhaltsverzeichnis Preface. Part I. 1 Introduction - uncertainty and risk in geotechnical engineering. 1.1 Offshore platforms. 1.2 Pit mine slopes. 1.3 Balancing risk and reliability in a geotechnical design. 1.4 Historical development of reliability methods in civil engineering. 1.5 Some terminological and philosophical issues. 1.6 The organization of this book. 1.7 A comment on notation and nomenclature. 2 Uncertainty. 2.1 Randomness, uncertainty, and the world. 2.2 Modeling uncertainties in risk and reliability analysis. 2.3 Probability. 3 Probability. 3.1 Histograms and frequency diagrams. 3.2 Summary statistics. 3.3 Probability theory. 3.4 Random variables. 3.5 Random process models. 3.6 Fitting mathematical pdf models to data. 3.7 Covariance among variables. 4 Inference. 4.1 Frequentist theory. 4.2 Bayesian theory. 4.3 Prior probabilities. 4.4 Inferences from sampling. 4.5 Regression analysis. 4.6 Hypothesis tests. 4.7 Choice among models. 5 Risk, decisions and judgment. 5.1 Risk. 5.2 Optimizing decisions. 5.3 Non-optimizing decisions. 5.4 Engineering judgment. Part II. 6 Site characterization. 6.1 Developments in site characterization. 6.2 Analytical approaches to site characterization. 6.3 Modeling site characterization activities. 6.4 Some pitfalls of intuitive data evaluation. 6.5 Organization of Part II. 7 Classification and mapping. 7.1 Mapping discrete variables. 7.2 Classification. 7.3 Discriminant analysis. 7.4 Mapping. 7.5 Carrying out a discriminant or logistic analysis. 8 Soil variability. 8.1 Soil properties. 8.2 Index tests and classification of soils. 8.3 Consolidation properties. 8.4 Permeability. 8.5 Strength properties. 8.6 Distributional properties. 8.7 Measurement error. 9 Spatial variability within homogeneous deposits. 9.1 Trends and variations about trends. 9.2 Residual variations. 9.3 Estimating autocorrelation and autocovariance. 9.4 Variograms and geostatistics. Appendix: algorithm for maximizing log-likelihood of autocovariance. 10 Random field theory. 10.1 Stationary processes. 10.2 Mathematical properties of autocovariance functions. 10.3 Multivariate (vector) random fields. 10.4 Gaussian random fields. 10.5 Functions of random fields. 11 Spatial sampling. 11.1 Concepts of sampling. 11.2 Common spatial sampling plans. 11.3 Interpolating random fields. 11.4 Sampling for autocorrelation. 12 Search theory...