Share
Fr. 250.00
Gerard Finet, Jacques Ohayon, Roderic Pettigrew
Biomechanics of Coronary Atherosclerotic Plaque - From Model to Patient
English · Paperback / Softback
Shipping usually within 3 to 5 weeks
Description
Biomechanics of Coronary Atherosclerotic Plaque: From Model to Patient, First Edition, is the first comprehensive text to focus on important biomechanical studies conducted in the last decade that have increased our understanding of coronary atherosclerotic plaque initiation, growth, and rupture, as well as improving the design of medical devices and clinical interventions, including surgical procedures. The book provides students, researchers, engineers, clinicians, and interventional cardiologists with an overview of the main topics related to the biomechanics of atherosclerosis, in a single volume written by several experts in the field.
This volume is part of the Biomechanics of Living Organs book series. The biomechanics of human soft tissues and organs has been an emerging research field since the publication of Y.C. Fung's original book series in the 1990s. The publication of such books entirely dedicated to a specific biomechanical subject is necessary to advance scientific research in the field of biomechanics and to transfer important knowledge to future generations. Therefore, this series of volumes on the biomechanics of living organs has been created. This series began in July 2017 with the publication of a first volume on the fundamentals of Hyperelastic Constitutive Laws for Finite Element Modeling of Living Organs. The current volume on the Biomechanics of Coronary Atherosclerotic Plaque, is the latest in this new series.
List of contents
Part 1: Biology, Physiopathology, Hemodynamics, Myogenic Responses and Clinical Intravascular Imaging of the Coronary Vascular Wall
1. Biomechanical Regulation of Endothelial Function in Atherosclerosis
2. Molecular mechanisms of the vascular responses to hemodynamic forces
3. Advanced atherosclerotic plaques in animal models versus human lesions: key elements to translation
4. Modeling the Glagov s compensatory enlargement of human coronary atherosclerotic plaque
5. Measuring coronary arterial compliance and vasomotor response in clinical and research settings
6. Coronary intravascular ultrasound and optical coherence tomography imaging and clinical contexts in coronary hemodynamics
7. The interaction of biochemical, biomechanical and clinical factors of coronary disease: review and outlook
Part 2: Modeling Blood Flow in Arterial Branches and Bifurcations
8. Local blood flow parameters and atherosclerosis in coronary artery bifurcations
9. Effect of regional analysis methods on assessing the association between wall shear stress and coronary artery disease progression in the clinical setting
10. Hemodynamic disturbance due to serial stenosis in human coronary bifurcations: A computational fluid dynamics study
11. Hemodynamic perturbations due to the presence of stents
12. A new reduced-order model to assess the true fractional flow reserve of a left main coronary artery stenosis with downstream lesions and collateral circulations: an in vitro study
Part 3: Fluid-Structure Interaction, Stress Distribution and Plaque Rupture in Arterial Wall
13. In vitro, primarily microfluidic models for atherosclerosis
14. Prediction of the coronary plaque growth and vulnerability change by using patient-specific 3D FSI models based on intravascular ultrasound and optical coherence tomography follow-up data
15. Atheromatous plaque initiation and growth: a multiphysical process explored by an in-silico mass transport model
16. Emergent biomechanical factors predicting vulnerable coronary atherosclerotic plaque rupture
17. Microcalcifications and plaque rupture
18. Identification of coronary plaque mechanical properties from ex-vivo testing
19. Importance of residual stress and basal tone in healthy and pathological human coronary arteries
Part 4: Imaging Inflammatory Biomarkers for in vivo Intravascular Plaque Characterization
20. Intravascular ultrasound imaging of human coronary atherosclerotic plaque: novel morpho-elastic biomarkers of instability
21. Magnetic resonance elastography for arterial wall characterization
22. Noninvasive ultrafast ultrasound for imaging the coronary vasculature and assessing the arterial wall s biomechanics
23. Pulse wave imaging for the mechanical assessment of atherosclerotic plaques
Part 5: Stenting, Coated Balloon, Drug Elution Systems and Modelling
24. Structure-function relation in the coronary artery tree: theory and applications in interventional cardiology
25. Sequential technique for the stenting of a coronary bifurcation: the re-proximal optimizing technique strategy
26. Modeling the stent deployment in coronary arteries and coronary bifurcations
27. The coated balloon protocol: An emergent clinical technique
28. Endovascular drug delivery and drug-elution systems
About the author
Gérard Finet is the Director of the Medical and interventional Cardiology Departments at the Cardiovascular Hospital Louis Pradel, Lyon, France. He received his MD in 1984 and his PhD in Biomedical Engineering and Intravascular Ultrasound Imaging in 1994 at the University Claude Bernard of Lyon, France. He joined the University of Lyon-1 in 1996 as a full Professor of Cardiology. The activities of Dr. Gérard Finet are dedicated to coronary IVUS imaging, coronary artery diseases and valvular diseases. In 1998, he was appointed head of the Interventional Cardiology Department at the Cardiovascular Hospital Louis Pradel. In 2000 he was an invited senior scientist at the Intravascular Ultrasound Imaging and Cardiac Catheterization Laboratories, Washington Hospital Center, Washington, DC, USA. He is known internationally for his pioneering works performed at the University of Lyon, INSERM and Hospices Civils de Lyon on: 1) Multiple plaque ruptures in acute coronary syndrome, 2) Fractal nature of the coronary vascular trees, and 3) Sequential proximal optimizing technique in provisional coronary bifurcation stenting. He has published more than 170 peer-reviewed articles in these fields.Jacques Ohayon is Professor of Mechanics at the Engineering school Polytech, Univ. Savoie Mont-Blanc, France. From 1985 to 1988, he was visiting fellow at the Biomedical Engineering Branch of the National Institutes of Health (NIH), Bethesda MD, USA. He received the 1998 Junior Prize of the French Biomechanics Society (SB) for his research on the biomechanics of the left ventricle. His current research focuses on the biomechanics of atherosclerotic plaque and the development of new clinical tools for imaging the elasticity of vulnerable plaques. From 2006 to 2007, he was visiting professor at the National Institute of Biomedical Imaging and Bioengineering at the NIH, USA. Jacques Ohayon was the Chairman of the SB, which also awarded him the Senior Prize in 2016 for his work on the biomechanics of coronary plaque rupture. In 2020, he was a visiting professor at Texas A & M University and conducted his research in the field of endothelial cell mechanobiology at the Houston Methodist Research Institute (HMRI). Since 2020, he is also Adjunct Professor of Cardiovascular Sciences at HMRI, Texas, USA.
Roderic I. PETTIGREW is the CEO of the EnHealth and Executive Dean for EnMed at Texas A&M University and Houston Methodist Hospital. In 1977, Dr. Pettigrew received his Ph.D. in applied radiation physics from the Department of Nuclear Engineering at MIT. In 1979, he received his M.D. from the Leonard M. Miller School of Medicine, University of Miami. From 2002 to 2017, he was the founding Director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) at the NIH. Prior to his appointment at the NIH, Dr. Pettigrew was Professor of Radiology, Medicine (Cardiology) at Emory University in Atlanta, Georgia, Professor of Bioengineering at the Georgia Institute of Technology, and Director of the Emory Center for MR Research at the Emory University School of Medicine. He is known internationally for his pioneering work at Emory University involving four-dimensional imaging of the cardiovascular system using magnetic resonance (MRI). His current research focuses on integrated imaging and predictive modeling of coronary atherosclerotic disease. Dr. Pettigrew has been elected to membership in the US National Academy of Medicine, the National Academy of Engineering, and the National Academy of Inventors. He has also been elected a foreign member of the National Academy of Sciences, India. Other awards include Phi Beta Kappa, the Bennie Award for Achievement at Morehouse College, the Most Distinguished Alumnus of the University of Miami (1990), the Hall of Fame of the Miller School of Medicine, the Pritzker Distinguished Achievement Award of the Biomedical Engineering Society, the Distinguished Service Award of the National Medical Association, the Pierre Galletti Award of the American Institute of Medical and Biological Engineering, the Inaugural Gold Medal Award of the Academy of Radiology Research, the Distinguished Service Award of the International Society of Magnetic Resonance in Medicine, the Spirit of the Heart Award of the Association of Black Cardiologist, and the Gold Medal of the Radiological Society of North America (RSNA).
Product details
Assisted by | Gerard Finet (Editor), Jacques Ohayon (Editor), Roderic Pettigrew (Editor) |
Publisher | Elsevier Science & Technology |
Languages | English |
Product format | Paperback / Softback |
Released | 17.03.2020 |
EAN | 9780128171950 |
ISBN | 978-0-12-817195-0 |
Dimensions | 191 mm x 33 mm x 235 mm |
Weight | 1400 g |
Series |
Biomechanics of Living Organs |
Subjects |
Natural sciences, medicine, IT, technology
> Medicine
> Pharmacy
SCIENCE / Biotechnology, TECHNOLOGY & ENGINEERING / Biomedical, biotechnology, Biomedical engineering |
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.