Fr. 69.00

Sphere Packings - Ed. by John Talbot

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

Sphere Packings is one of the most attractive and challenging subjects in mathematics. Almost 4 centuries ago, Kepler studied the densities of sphere packings and made his famous conjecture. In the course of centuries, many exciting results have been obtained, ingenious methods created, related challenging problems proposed, and many surprising connections with othe subjects found. Thus, though some of its original problems are still open, sphere packings has been developed into an important discipline. This book tries to give a full account of this fascinating subject, especially its local aspects, discrete aspects and its proof methods.

List of contents

The Gregory-Newton Problem and Kepler's Conjecture.- Positive Definite Quadratic Forms and Lattice Sphere Packings.- Lower Bounds for the Packing Densities of Spheres.- Lower Bounds for the Blocking Numbers and the Kissing Numbers of Spheres.- Sphere Packings Constructed from Codes.- Upper Bounds for the Packing Densities and the Kissing Numbers of Spheres I.- Upper Bounds for the Packing Densities and the Kissing Numbers of Spheres II.- Upper Bounds for the Packing Densities and the Kissing Numbers of Spheres III.- The Kissing Numbers of Spheres in Eight and Twenty-Four Dimensions.- Multiple Sphere Packings.- Holes in Sphere Packings.- Problems of Blocking Light Rays.- Finite Sphere Packings.

Report

From the reviews:
"Problems dealing with sphere packings have attracted the interest of mathematicians for more than three centuries. Important contributions are due to Kepler, Newton and Gregory, Lagrange, Seeber and Gauss, Dirichlet, Hermite, Korkine and Zolotarev, Minkowski, Thue, Voronoui, Blichfeldt, Delone, Davenport, van der Waerden and many living mathematicians. One reason for this interest is the fact that there are many completely different aspects of sphere packings. These include the following: dense lattice and non-lattice packing of spheres in low and in general dimensions, multiple packings, geometric theory of positive definite quadratic forms and reduction theory, reduction theory of lattices and their computational aspects, special lattices such as the Leech lattice and relations to coding, information and group theory, finite packings of spheres, problems dealing with kissing and blocking numbers and other problems of discrete geometry. There is a series of books in which some of these aspects are dealt with thoroughly,...
The merit of Zong's book is that it covers all of the above aspects in a concise, elegant and readable form and thus gives the reader a good view of the whole area. Several of the most recent developments are also included."  (Peter M. Gruber, Mathematical Reviews) 

Product details

Authors Chuanming Zong
Assisted by Joh Talbot (Editor), John Talbot (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 22.10.2001
 
EAN 9780387987941
ISBN 978-0-387-98794-1
No. of pages 242
Dimensions 157 mm x 245 mm x 241 mm
Weight 528 g
Illustrations XIV, 242 p.
Series Universitext
uniext
Universitext
Subjects Children's and young people's books > Young people's books from 12 years of age
Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.