Fr. 69.00

Predictive Intelligence in Medicine - 5th International Workshop, PRIME 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book constitutes the proceedings of the 5th International Workshop on Predictive Intelligence in Medicine, PRIME 2022, held in conjunction with MICCAI 2022 as a hybrid event in Singapore, in September 2022.The 19 papers presented in this volume were carefully reviewed and selected for inclusion in this book. The contributions describe new cutting-edge predictive models and methods that solve challenging problems in the medical field for a high-precision predictive medicine.

List of contents

Federated Time-dependent GNN Learning from Brain Connectivity Data with Missing Timepoints.- Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing.- Multi-Tracer PET Imaging Using Deep Learning: Applications in Patients with High-Grade Gliomas.- Multiple Instance Neuroimage Transformer.- Intervertebral Disc Labeling With Learning Shape Information, A Look Once Approach.- Mixup augmentation improves age prediction from T1-weighted brain MRI scans.- Diagnosing Knee Injuries from MRI with Transformer Based Deep Learning.- MISS-Net: Multi-view contrastive transformer network for MCI stages prediction using brain 18F-FDG PET imaging.- TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation.- Opportunistic hip fracture risk prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study.- Weakly-Supervised TILs Segmentation based on Point Annotations using Transfer Learning with Point Detector and Projected-Boundary Regressor.- Discriminative Deep Neural Network for Predicting Knee OsteoArthritis in Early Stage.- Long-Term Cognitive Outcome Prediction in Stroke Patients Using Multi-Task Learning on Imaging and Tabular Data.- Quantifying the Predictive Uncertainty of Regression GNN Models Under Target Domain Shifts.- Investigating the Predictive Reproducibility of Federated Graph Neural Networks using Medical Datasets.- Learning subject-specific functional parcellations from cortical surface measures.- A Triplet Contrast Learning of Global and Local Representations for Unannotated Medical Images.- Predicting Brain Multigraph Population From a Single Graph Template for Boosting One-Shot Classification.- Meta-RegGNN: Predicting Verbal and Full-Scale Intelligence Scores using Graph Neural Networks and Meta-Learning

Product details

Assisted by Ehsan Adeli (Editor), Celia Cintas (Editor), Sang Hyun Park et al (Editor), Sang Hyun Park (Editor), Islem Rekik (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 21.09.2022
 
EAN 9783031169182
ISBN 978-3-0-3116918-2
No. of pages 213
Dimensions 155 mm x 12 mm x 235 mm
Illustrations XI, 213 p. 70 illus., 62 illus. in color.
Series Lecture Notes in Computer Science
Subject Natural sciences, medicine, IT, technology > IT, data processing > IT

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.