Fr. 356.00

Interior Point Methods of Mathematical Programming

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

One has to make everything as simple as possible but, never more simple. Albert Einstein Discovery consists of seeing what every body has seen and thinking what nobody has thought. Albert S. ent_Gyorgy; The primary goal of this book is to provide an introduction to the theory of Interior Point Methods (IPMs) in Mathematical Programming. At the same time, we try to present a quick overview of the impact of extensions of IPMs on smooth nonlinear optimization and to demonstrate the potential of IPMs for solving difficult practical problems. The Simplex Method has dominated the theory and practice of mathematical pro gramming since 1947 when Dantzig discovered it. In the fifties and sixties several attempts were made to develop alternative solution methods. At that time the prin cipal base of interior point methods was also developed, for example in the work of Frisch (1955), Caroll (1961), Huard (1967), Fiacco and McCormick (1968) and Dikin (1967). In 1972 Klee and Minty made explicit that in the worst case some variants of the simplex method may require an exponential amount of work to solve Linear Programming (LP) problems. This was at the time when complexity theory became a topic of great interest. People started to classify mathematical programming prob lems as efficiently (in polynomial time) solvable and as difficult (NP-hard) problems. For a while it remained open whether LP was solvable in polynomial time or not. The break-through resolution ofthis problem was obtained by Khachijan (1989).

List of contents

I Linear Programming.- 1 Introduction to the Theory of Interior Point Methods.- 2 Affine Scaling Algorithm.- 3 Target-Following Methods for Linear Programming.- 4 Potential Reduction Algorithms.- 5 Infeasible-Interior-Point Algorithms.- 6 Implementation of Interior-Point Methods for Large Scale Linear Programs.- II Convex Programming.- 7 Interior-Point Methods for Classes of Convex Programs.- 8 Complementarity Problems.- 9 Semidefinite Programming.- 10 Implementing Barrier Methods for Nonlinear Programming.- III Applications, Extensions.- 11 Interior point Methods for Combinatorial Optimization.- 12 Interior Point Methods for Global Optimization.- 13 Interior Point Approaches for the VLSI Placement Problem.

Summary

At the same time, we try to present a quick overview of the impact of extensions of IPMs on smooth nonlinear optimization and to demonstrate the potential of IPMs for solving difficult practical problems.

Product details

Assisted by T. Terlaky (Editor), Tamá Terlaky (Editor), Tamas Terlaky (Editor), Tamás Terlaky (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 26.06.2009
 
EAN 9780792342014
ISBN 978-0-7923-4201-4
No. of pages 530
Weight 953 g
Illustrations XXII, 530 p.
Series Applied Optimization
Applied Optimization
Subject Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.