Read more
This is the first comprehensive account of the theory of mass transportation problems and its applications. In volume I, the authors systematically develop the theory of mass transportation with emphasis to the Monge-Kantorovich mass transportation and the Kantorovich-Rubinstein mass transshipment problems, and their various extensions. They discuss a variety of different approaches towards solutions of these problems and exploit the rich interrelations to several mathematical sciences--from functional analysis to probability theory and mathematical economics. The second volume is devoted to applications to the mass transportation and mass transshipment problems to topics in applied probability, theory of moments and distributions with given marginals, queucing theory, risk theory of probability metrics and its applications to various fields, amoung them general limit theorems for Gaussian and non-Gaussian limiting laws, stochastic differential equations, stochastic algorithms and rounding problems. The book will be useful to graduate students and researchers in the fields of theoretical and applied probabilitry, operations research, computer science, and mathematical economics. The prerequisites for this book are graduate level probability theory and real and functional analysis.
List of contents
Modifications of the Monge-Kantorovich Problems: Transportation Problems with Relaxed or Additional Constraints.- Application of Kantorovich-Type Metrics to Various Probabilistic-Type Limit Theorems.- Mass Transportation Problems and Recursive Stochastic Equations.- Stochastic Differential Equations and Empirical Measures.
About the author
Svetlozar T. Rachev is a Professor in Department of Applied Mathematics and Statistics, SUNY-Stony Brook.
Ludger Rüschendorf, Professor of Mathematical Stochastics, studied Mathematics, Physics and Economics in Münster. Diploma thesis 1972 - PhD 1974 in Hamburg in Asymptotic Statistics - Habilitation thesis 1979 in Aachen in the area of stochastic ordering, masstransportation and Fréchet bounds - Professorships in Germany: 1981 - 1987 in Freiburg, 1987-1993 in Münster, 1993- in Freiburg. He is elected member of the ISI, and author and co-author of several books and about 180 research papers.
Summary
Mass transportation problems concern the optimal transfer of masses from one location to another. This title is suitable for researchers in applied probability, operations research, computer science, and mathematical economics.