Fr. 196.00

Meromorphic Dynamics: Volume 1 - Abstract Ergodic Theory, Geometry, Graph Directed Markov Systems,

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more










"The second of two volumes builds on the foundational material on ergodic theory and geometric measure theory provided in Volume I, and applies all the techniques discussed to describe the beautiful and rich dynamics of elliptic functions. The text begins with an introduction to topological dynamics of transcendental meromorphic functions, before progressing to elliptic functions, discussing at length their classical properties, measurable dynamics and fractal geometry. The authors then look in depth at compactly non-recurrent elliptic functions. Much of this material is appearing for the first time in book or paper form. Both senior and junior researchers working in ergodic theory and dynamical systems will appreciate what is sure to be an indispensable reference"--

List of contents










Volume I. Preface; Acknowledgments; Introduction; Part I. Ergodic Theory and Geometric Measures: 1. Geometric measure theory; 2. Invariant measures: finite and infinite; 3. Probability (finite) invariant measures: basic properties and existence; 4. Probability (finite) invariant measures: finer properties; 5. Infinite invariant measures: finer properties; 6. Measure- theoretic entropy; 7. Thermodynamic formalism; Part II. Complex Analysis, Conformal Measures, and Graph Directed Markov Systems: 8. Selected topics from complex analysis; 9. Invariant measures for holomorphic maps f in A(X) or in Aw(X); 10. Sullivan conformal measures for holomorphic maps f in A(X) and in Aw(X); 11. Graph directed Markov systems; 12. Nice sets for analytic maps; References; Index of symbols; Subject index; Volume II. Preface; Acknowledgments; Introduction; Part III. Topological Dynamics of Meromorphic Functions: 13. Fundamental properties of meromorphic dynamical systems; 14. Finer properties of fatou components; 15. Rationally indifferent periodic points; Part IV. Elliptic Functions: Classics, Geometry, and Dynamics: 16. Classics of elliptic functions: selected properties; 17. Geometry and dynamics of (all) elliptic functions.

About the author

Janina Kotus is Professor of Mathematics at the Warsaw University of Technology, Poland. Her research focuses on dynamical systems, in particular holomorphic dynamical systems. Together with I. N. Baker and Y. Lű she laid the foundations for iteration of meromophic functions.Mariusz Urbański is Professor of Mathematics at the University of North Texas. His research interests include dynamical systems, ergodic theory, fractal geometry, iteration of rational and meromorphic functions, open dynamical systems, iterated function systems, Kleinian groups, diophantine approximations, topology and thermodynamic formalism. He is the author of eight books, seven monographs, and more than 200 papers.

Summary

This text, the first of two volumes, provides a comprehensive and self-contained approach to many fundamental results from ergodic theory and geometric measure theory. All key concepts are carefully explained and full proofs are provided in this indispensable reference for any researchers interested in low-dimensional dynamics.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.