Fr. 76.00

Practical Fairness - Achieving Fair and Secure Data Models

English · Paperback / Softback

Shipping usually within 3 to 5 weeks

Description

Read more










"Fairness is becoming a paramount consideration for data scientists. Mounting evidence indicates that the widespread deployment of machine learning and AI in business and government is reproducing the same biases we're trying to fight in the real world. But what does fairness mean when it comes to code? This practical book covers basic concerns related to data security and privacy to help data and AI professionals use code that's fair and free of bias." -- Back cover.

About the author










Aileen Nielsen is a software engineer who has analyzed data in a variety of settings from a physics laboratory to a political campaign to a healthcare startup. She also has a law degree and splits her time between a deep learning startup and research as a Fellow in Law and Technology at ETH Zurich. She has given talks around the world on fairness issues in data and modeling.


Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.