Read more
Informationen zum Autor Craig Williams is programme director and senior lecturer in sport and exercise science at the University of Exeter. Chris Wragg is a lecturer in sport and exercise science at the University of Brighton. Klappentext This text introduces undergraduate students to the process of conducting independent research in sport and exercise physiology, biomechanics and psychology, covering all aspects in a user-friendly style. Zusammenfassung This text introduces undergraduate students to the process of conducting independent research in sport and exercise physiology, biomechanics and psychology, covering all aspects in a user-friendly style. Inhaltsverzeichnis 1. Learning outcomes 1.1 Introduction 1.2 The history of science 1.2.1 Logic and deductive reasoning 1.2.2 Inductivism 1.2.3 Reductionism 1.2.4 Hypothesis testing 1.3 Summery and criticism of the scientific method 1.4 The foundations and development of exercise and sport sciences, Summary 2. Learning outcomes 2.1 Introduction 2.2 Why is a literature review so important? 2.2.1 The purpose of a review of literature 2.2.2 Planning and preparation 2.2.3 Define the research area 2.2.4 State the specific purpose of the search 2.2.5 Select database(s) and descriptors 2.2.6 Plan 2.2.7 Conduct 2.3 How to write the review, Common problems faced by students, Common mistakes, Summary 3. Learning outcomes 3.1 Introduction 3.1.1 Common mistakes 3.1.2 The research question and experimental design 3.2 Validity 3.3 Internal validity 3.3.1 Threats to internal validity 3.4 External validity 3.5 Validity of measurement 3.5.1 Logical validity 3.5.2 Criterion validity 3.5.3 Construct validity 3.5.4 Ecological validity 3.6 Reliability 3.6.1 Sources of variability 3.6.1.1 Technician error 3.6.1.2 Equipment error 3.6.1.3 Learning effect 3.6.1.4 Biological variance 3.6.2 Terminology 3.6.2.1 Reproducibility 3.6.2.3 Constancy 3.7 Types of experimental design 3.7.1 Single subject study 3.7.2 Longitudinal study 3.7.3 True experimental 3.7.4 Quasi-experimental 3.7.5 Causal-comparative 3.7.6 Correlational 3.8 Selecting the appropriate experimental design, Summary 4. Learning outcomes 4.1 Introduction 4.2 Different types of averages; a quick reminder 4.3 Normal distribution 4.3.1 Skewness 4.3.2 Multimodal data 4.3.3 Variance 4.4 Measures of variance 4.4.1 Range 4.4.2 Standard deviation 4.4.3 Coefficient of variation 4.5 Standard Deviation and the normal distribution, Summary 5. Learning outcomes 5.1 Introduction 5.2 Type I and Type II Errors 5.3 Statistical power 5.4 One-tailed and Two-tailed tests of difference 5.5 Measuring differences between independent samples 5.5.1 Independent samples t tests 5.5.2 Dependent samples (repeated measures) t tests 5.6 Testing differences between more than two samples 5.6.1 Simple one way analysis of variance (ANOVA) 5.6.2 One way repeated measures analysis of variance (ANOVA) 5.7 Post hoc testing 5.8 Factorial analysis of variance 5.9 Common mistakes, Summary 6. Learning outcomes 6.1 Introduction 6.2 Scatter plots 6.3 Correlations 6.3.1 Sample size and statistical significance 6.3.2 Size of a correlation coefficient 6.3.3 Understanding correlations 6.4 Bivariate regression 6.5 Multiple regression 6.6 Common mistakes, Summary 7. Learning outcomes 7.1 Introduction 7.2 Ordinal scales 7.3 Non-parametric statistical tests 7.3.1 Tests of difference for independent samples 7.3.2 Tests of difference for dependent samples (repeated measures) 7.3.3 Relationship testing 7.4 Chi-squares 7.5 Common mistakes, Summary 8. Learning outcomes 8.1 Introduction 8.2 Guidelines for text 8.3 Guidelines for tables 8.4 Guidelines for figures 8.5 Presentations 8.5.1 Oral presentations 8.5.2 Poster presentations 8.7 Common mistakes, Summary 9. Learning outcomes 9.1 Introduction 9.2 Generic information related to the interpretation of data 9.3 Difference testing 9.3.1 Interpreting effects 9.3.2 How sign...