Fr. 55.50

How Data Quality Affects our Understanding of the Earnings Distribution

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This open access book demonstrates how data quality issues affect all surveys and proposes methods that can be utilised to deal with the observable components of survey error in a statistically sound manner. This book begins by profiling the post-Apartheid period in South Africa's history when the sampling frame and survey methodology for household surveys was undergoing periodic changes due to the changing geopolitical landscape in the country. This book profiles how different components of error had disproportionate magnitudes in different survey years, including coverage error, sampling error, nonresponse error, measurement error, processing error and adjustment error. The parameters of interest concern the earnings distribution, but despite this outcome of interest, the discussion is generalizable to any question in a random sample survey of households or firms.
This book then investigates questionnaire design and item nonresponse by building a response propensity modelfor the employee income question in two South African labour market surveys: the October Household Survey (OHS, 1997-1999) and the Labour Force Survey (LFS, 2000-2003). This time period isolates a period of changing questionnaire design for the income question. Finally, this book is concerned with how to employee income data with a mixture of continuous data, bounded response data and nonresponse. A variable with this mixture of data types is called coarse data. Because the income question consists of two parts -- an initial, exact income question and a bounded income follow-up question -- the resulting statistical distribution of employee income is both continuous and discrete. The book shows researchers how to appropriately deal with coarse income data using multiple imputation.
The take-home message from this book is that researchers have a responsibility to treat data quality concerns in a statistically sound manner, rather than making adjustments to public-use data in arbitrary ways, often underpinned by undefensible assumptions about an implicit unobservable loss function in the data. The demonstration of how this can be done provides a replicable concept map with applicable methods that can be utilised in any sample survey.
 
 

List of contents

Introduction.- A Framework for Investigating Micro Data Quality, with Application to South African Labour Market Household Surveys.- Questionnaire Design and Response Propensities for Labour Income Micro Data.- Univariate Multiple Imputation for Coarse Employee Income Data.- Conclusion: How Data Quality A ects our Understanding of the Earnings Distribution.

About the author










Reza Che Daniels is Associate Professor in the School of Economics, University of Cape Town. He was one of the Principal Investigators of the National Income Dynamics Study (NIDS), South Africa's first nationally representative longitudinal household survey. He is also one of the Principal Investigators of the NIDS-Coronavirus Rapid Mobile Survey (NIDS-CRAM), which uses a sub-sample of the NIDS to monitor the impact of COVID-19 in South Africa.

Product details

Authors Reza Che Daniels
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 31.07.2022
 
EAN 9789811936418
ISBN 978-981-1936-41-8
No. of pages 114
Dimensions 155 mm x 7 mm x 235 mm
Illustrations XX, 114 p. 11 illus., 5 illus. in color.
Subject Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.