Fr. 168.00

Optimal Control Problems Arising in Mathematical Economics

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This book is devoted to the study of two large classes of discrete-time optimal control problems arising in mathematical economics. Nonautonomous optimal control problems of the first class are determined by a sequence of objective functions and sequence of constraint maps. They correspond to a general model of economic growth. We are interested in turnpike properties of approximate solutions and in the stability of the turnpike phenomenon under small perturbations of objective functions and constraint maps. The second class of autonomous optimal control problems  corresponds to another general class of models of economic dynamics which  includes the Robinson-Solow-Srinivasan  model as a particular case. 
In Chap. 1 we discuss turnpike properties for a large class  of discrete-time optimal control problems studied in the literature and for the Robinson-Solow-Srinivasan model. In Chap. 2 we introduce the first class of optimal control problems and study its turnpike property. This class of problems is also discussed in Chaps. 3-6. In Chap. 3 we study the stability of the turnpike phenomenon under small perturbations of the objective functions. Analogous results for problems with discounting are considered in Chap. 4. In Chap. 5 we study the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. Analogous results for problems with discounting are established in Chap. 6. The results of Chaps. 5 and 6 are new. The second class of problems is studied in Chaps. 7-9. In Chap. 7 we study the turnpike properties.  The stability of the turnpike phenomenon under small perturbations of the objective functions is established in Chap. 8. In  Chap. 9 we establish the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. The results of Chaps. 8 and 9 are new. In Chap. 10 we study optimal control problems related to a model of knowledge-based endogenous economic growth and show  the existence of trajectories of unbounded economic growth and provide estimates for the growth rate.

List of contents

Preface-1. Introduction.- 2. Turnpike Conditions for Optimal Control Systems.- 3. Nonautonomous Problems with Perturbed Objective Functions.- 4. Nonautonomous Problems with Discounting.- 5. Stability of the Turnpike Phenomenon for Nonautonomous Problems.- 6. Stability of the Turnpike for Nonautonomous Problems with Discounting.- 7. Turnpike Properties for Autonomous Problems.- 8. Autonomous Problems with Perturbed Objective Functions.- 9. Stability Results for Autonomous Problems.- 10. Models with Unbounded Endogenous Economic Growth-Reference.- Index.

About the author










Alexander J. Zaslavski, Department of Mathematics, Technion - Israel Institute of Technology, Rishon LeZion, Israel.
LeZion, Israel
LeZion, Israel
LeZion, Israel
LeZion, Israel

Report

"This is an excellent monograph on a very important subject: optimal control in mathematical economics. It is based on many related contributions. including the author's work and expertise." (Gheorghe Moro anu, zbMATH 1497.49001, 2022)

Product details

Authors Alexander J Zaslavski, Alexander J. Zaslavski
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 30.06.2022
 
EAN 9789811692970
ISBN 978-981-1692-97-0
No. of pages 378
Dimensions 155 mm x 24 mm x 235 mm
Illustrations XI, 378 p. 1 illus.
Series Monographs in Mathematical Economics
Monographs in Mathematical Eco
Subject Natural sciences, medicine, IT, technology > Mathematics > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.