Fr. 76.00

Computational Texture and Patterns - From Textons to Deep Learning

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance-to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adaptingto new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.

List of contents

Preface.- Acknowledgments.- Visual Patterns and Texture.- Textons in Human and Computer Vision.- Texture Recognition.- Texture Segmentation.- Texture Synthesis.- Texture Style Transfer.- Return of the Pyramids.- Open Issues in Understanding Visual Patterns.- Applications for Texture and Patterns.- Tools for Mining Patterns: Cloud Services and Software Libraries.- Bibliography.- Author's Biography.

About the author










Dr. Kristin J. Dana received a Ph.D. from Columbia University (New York, NY) in 1999, an M.S. degree from Massachusetts Institute of Technology in 1992 (Cambridge, MA), and a B.S. degree in 1990 from the Cooper Union (New York, NY). She is currently a Full Professor in the Department of Electrical and Computer Engineering at Rutgers University. She is also a member of the graduate faculty of Rutgers Computer Science Department. Prior to academia, Dr. Dana was on the research staff at Sarnoff Corporation a subsidiary of SRI (formerly Stanford Research Institute), developing real-time motion estimation algorithms for applications in defense, biomedicine, and entertainment industries. She is the recipient of the General Electric "Faculty of the Future" fellowship in 1990, the Sarnoff Corporation Technical Achievement Award in 1994 for the development of a practical algorithm for the real-time alignment of visible and infrared video images, the 2001 National Science Foundation Career Award for a program investigating surface science for vision and graphics, and a team recipient of the Charles Pankow Innovation Award in 2014 from the ASCE. Dr. Danas research expertise is in computer vision including computational photography, machine learning, quantitative dermatology, illumination modeling, texture and reflectance models, optical devices, and applications of robotics. On these topics, she has published over 70 papers in leading journals and conferences.

Product details

Authors Kristin J Dana, Kristin J. Dana
Publisher Springer, Berlin
 
Original title Computational Texture and Patterns
Languages English
Product format Paperback / Softback
Released 01.01.2018
 
EAN 9783031006951
ISBN 978-3-0-3100695-1
No. of pages 99
Dimensions 202 mm x 8 mm x 236 mm
Illustrations XIII, 99 p.
Series Synthesis Lectures on Computer Vision
Subject Natural sciences, medicine, IT, technology > IT, data processing > Application software

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.