Share
Fr. 178.00
Robert J Kunsch, Robert J. Kunsch, Gitta Kutyniok, Holger Rauhut
Compressed Sensing in Information Processing
English · Hardback
Shipping usually within 2 to 3 weeks (title will be printed to order)
Description
This contributed volume showcases the most significant results obtained from the DFG Priority Program on Compressed Sensing in Information Processing. Topics considered revolve around timely aspects of compressed sensing with a special focus on applications, including compressed sensing-like approaches to deep learning; bilinear compressed sensing - efficiency, structure, and robustness; structured compressive sensing via neural network learning; compressed sensing for massive MIMO; and security of future communication and compressive sensing.
List of contents
Hierarchical compressed sensing (G. Wunder).- Proof Methods for Robust Low-Rank Matrix Recovery (T. Fuchs).- New Challenges in Covariance Estimation: Multiple Structures and Coarse Quantization (J. Maly).- Sparse Deterministic and Stochastic Channels: Identification of Spreading Functions and Covariances(Dae Gwan Lee).- Analysis of Sparse Recovery Algorithms via the Replica Method (A. Bereyhi).- Unbiasing in Iterative Reconstruction Algorithms for Discrete Compressed Sensing(F.H. Fischer).- Recovery under Side Constraints (M. Pesavento).- Compressive Sensing and Neural Networks from a Statistical Learning Perspective (E. Schnoor).- Angular Scattering Function Estimation Using Deep Neural Networks (Y. Song).- Fast Radio Propagation Prediction with Deep Learning (R. Levie).- Active Channel Sparsification: Realizing Frequency Division Duplexing Massive MIMO with Minimal Overhead (M. B. Khalilsarai).- Atmospheric Radar Imaging Improvements Using Compressed Sensing and MIMO (J. O. Aweda).- Over-the-Air Computation for Distributed Machine Learning and Consensus in Large Wireless Networks (M. Frey).- Information Theory and Recovery Algorithms for Data Fusion in Earth Observation (M. Fornasier).- Sparse Recovery of Sound Fields Using Measurements from Moving Microphones (A. Mertins).- Compressed Sensing in the Spherical Near-Field to Far-Field Transformation (C. Culotta-López).
About the author
¿Prof. Dr. Gitta Kutyniok currently has a Bavarian AI Chair for Mathematical Foundations of Artificial Intelligence at the Ludwig-Maximilians Universität München. She received her Diploma in Mathematics and Computer Science as well as her Ph.D. degree from the Universität Paderborn in Germany, and her Habilitation in Mathematics in 2006 at the Justus-Liebig Universität Gießen. From 2001 to 2008 she held visiting positions at several US institutions, including Princeton University, Stanford University, Yale University, Georgia Institute of Technology, and Washington University in St. Louis, and was a Nachdiplomslecturer at ETH Zurich in 2014. In 2008, she became a full professor of mathematics at the Universität Osnabrück, and moved to Berlin three years later, where she held an Einstein Chair in the Institute of Mathematics at the Technische Universität Berlin and a courtesy appointment in the Department of Computer Science and Engineering until 2020. In addition, Gitta Kutyniok holds an Adjunct Professorship in Machine Learning at the University of Tromso since 2019.
Product details
Assisted by | Robert J Kunsch (Editor), Robert J. Kunsch (Editor), Gitta Kutyniok (Editor), Holger Rauhut (Editor) |
Publisher | Springer, Berlin |
Languages | English |
Product format | Hardback |
Released | 01.09.2022 |
EAN | 9783031097447 |
ISBN | 978-3-0-3109744-7 |
No. of pages | 542 |
Dimensions | 155 mm x 33 mm x 235 mm |
Illustrations | XVII, 542 p. 116 illus., 90 illus. in color. |
Series |
Applied and Numerical Harmonic Analysis |
Subject |
Natural sciences, medicine, IT, technology
> Mathematics
> Analysis
|
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.