Fr. 195.00

Evolutionary Synthesis of Pattern Recognition Systems

English · Hardback

Shipping usually within 3 to 5 weeks (title will be specially ordered)

Description

Read more

Evolutionary computation is becoming increasingly important for computer vision and pattern recognition and provides a systematic way of synthesis and analysis of object detection and recognition systems. Incorporating "learning" into recognition systems will enable these systems to automatically generate new features on the fly and cleverly select a good subset of features according to the type of objects and images to which they are applied.
This unique monograph investigates evolutionary computational techniques--such as genetic programming, linear genetic programming, coevolutionary genetic programming and genetic algorithms--to automate the synthesis and analysis of object detection and recognition systems.
The purpose of incorporating learning into the system design is to avoid the time-consuming process of feature generation and selection and to reduce the cost of building object detection and recognition systems.
Researchers, professionals, engineers, and students working in computer vision, pattern recognition, target recognition, machine learning, evolutionary learning, image processing, knowledge discovery and data mining, cybernetics, robotics, automation and psychology will find this well-developed and organized volume an invaluable resource.

List of contents

Feature Synthesis for Object Detection.- Mdl-Based Efficient Genetic Programming for Object Detection.- Feature Selection for Object Detection.- Evolutionary Feature Synthesis for Object Recognition.- Linear Genetic Programming for Object Recognition.- Applications of Linear Genetic Programming for Object Recognition.- Summary and Future Work.

Summary

Evolutionary computation is becoming increasingly important for computer vision and pattern recognition and provides a systematic way of synthesis and analysis of object detection and recognition systems. Incorporating "learning" into recognition systems will enable these systems to automatically generate new features on the fly and cleverly select a good subset of features according to the type of objects and images to which they are applied.

This unique monograph investigates evolutionary computational techniques--such as genetic programming, linear genetic programming, coevolutionary genetic programming and genetic algorithms--to automate the synthesis and analysis of object detection and recognition systems.

The purpose of incorporating learning into the system design is to avoid the time-consuming process of feature generation and selection and to reduce the cost of building object detection and recognition systems.

Researchers, professionals, engineers, and students working in computer vision, pattern recognition, target recognition, machine learning, evolutionary learning, image processing, knowledge discovery and data mining, cybernetics, robotics, automation and psychology will find this well-developed and organized volume an invaluable resource.

Product details

Authors B. Bhanu, Bi Bhanu, Bir Bhanu, Chris Krawiec, K. Krawiec, Krzysztof Krawiec, Y. Lin, Yingqian Lin, Yingqiang Lin
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 13.04.2005
 
EAN 9780387212951
ISBN 978-0-387-21295-1
No. of pages 296
Dimensions 156 mm x 241 mm x 24 mm
Weight 648 g
Illustrations XXIV, 296 p. 95 illus.
Series Monographs in Computer Science
Monographs in Computer Science
Subject Natural sciences, medicine, IT, technology > IT, data processing > IT

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.