Fr. 165.00

Crystallography and Surface Structure - An Introduction for Surface Scientists and Nanoscientists

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more

A valuable learning tool as well as a reference, this book provides students and researchers in surface science and nanoscience with the theoretical crystallographic foundations, which are necessary to understand local structure and symmetry of bulk crystals, including ideal and real single crystal surfaces. The author deals with the subject at an introductory level, providing numerous graphic examples to illustrate the mathematical formalism. The book brings together and logically connects many seemingly disparate structural issues and notations used frequently by surface scientists and nanoscientists. Numerous exercises of varying difficulty, ranging from simple questions to small research projects, are included to stimulate discussions about the different subjects.
 
From the contents:
Bulk Crystals, Three-Dimensional Lattices
- Crystal Layers, Two-Dimensional Lattices, Symmetry
- Ideal Single Crystal Surfaces
- Real Crystal Surfaces
- Adsorbate layers
- Interference Lattices
- Chiral Surfaces
- Experimental Analysis of Real Crystal Surfaces
- Nanoparticles and Crystallites
- Quasicrystals
- Nanotubes

List of contents

1. Introduction
2. Bulk Crystals: Three-Dimensional Lattices
2.1. Basic Definition
2.2. Representation of Bulk Crystals
2.3. Periodicity Cells of Lattices
2.4. Lattice Symmetry
2.5. Reciprocal Lattice
2.6. Neighbor Shells
2.7. Nanoparticles and Crystallites
2.8. Incommensurate Crystals and Quasicrystals
3. Crystal Layers: Two-Dimensional Lattices
3.1. Basic Definition, Miller Indices
3.2. Netplane-Adapted Lattice Vectors
3.3. Minkowski Reduction
3.4. Miller Indices for Cubic and Trigonal Lattices
3.5. Alternative Definition of Miller Indices, Miller Bravais Indices
3.6. Symmetry of Netplanes
3.7. Crystal Systems and Bravais Lattices in Two Dimensions
3.8. Crystallographic Classification of Netplanes and Monolayers
4. Ideal Single Crystal Surfaces
4.1. Basic Definition, Termination
4.2. Morphology of Surfaces, Stepped and Kinked Surfaces
4.3. Miller Index Decomposition
4.4. Chiral and Achiral Surfaces
5. Real Crystal Surfaces
5.1. Surface Relaxation
5.2. Surface Reconstruction
5.3. Growth Processes
5.4. Facetting
6. Adsorbate layers
6.1. Definition and Classification
6.2.. Adsorbate Sites
6.3. Wood Notation
6.4.. High-Order Commensurate (HOC) Overlayers
6.5. Interference Lattices
6.6. Symmetry and Domains
6.7. Adsorption and Chirality
7. Experimental Analysis of Real Crystal Surfaces
7.1. Experimental Methods
7.2. Surface Structure Compilations
7.3. Database Formats
8. Nanotubes
8.1. Basic Definition
8.2. Nanotubes and Symmetry
8.3. Complex Nanotubes
A. Sketches of High-Symmetry Adsorbate Sites
B. Parameter Tables of Crystals
C. Mathematics of the Wood Notation
D. Mathematics of the Minkowski Reduction
E. Details of Number Theory
F. Details of Vector Calculus
G. Details of Fourier Theory
H. List of Surface Web Sites

About the author

Klaus Hermann is a senior scientist at the Fritz-Haber Institute and staff member of the Physics department of the Free University Berlin (Germany). He obtained a PhD in Physics from the Technical University Clausthal (Germany), worked as postdoc in Mexico and the USA before being appointed Professor at the Technical University Clausthal. He was visiting professor in the USA, Austria, Poland, Spain and in Hong Kong. Klaus Hermann has (co-)authored 175 scientific publications, three books, two scientific movies, and different software projects on various subjects of surface science, catalysis, quantum chemistry, and computer science. He is co-author of the open Surface Structure Database, formerly NIST Surface Structure Database.

Summary

A valuable learning tool as well as a reference, this book provides students and researchers in surface science and nanoscience with the theoretical crystallographic foundations, which are necessary to understand local structure and symmetry of bulk crystals, including ideal and real single crystal surfaces. The author deals with the subject at an introductory level, providing numerous graphic examples to illustrate the mathematical formalism. The book brings together and logically connects many seemingly disparate structural issues and notations used frequently by surface scientists and nanoscientists. Numerous exercises of varying difficulty, ranging from simple questions to small research projects, are included to stimulate discussions about the different subjects.
 
From the contents:
Bulk Crystals, Three-Dimensional Lattices
- Crystal Layers, Two-Dimensional Lattices, Symmetry
- Ideal Single Crystal Surfaces
- Real Crystal Surfaces
- Adsorbate layers
- Interference Lattices
- Chiral Surfaces
- Experimental Analysis of Real Crystal Surfaces
- Nanoparticles and Crystallites
- Quasicrystals
- Nanotubes

Product details

Authors Klaus Hermann
Publisher Wiley-VCH
 
Languages English
Product format Hardback
Released 01.12.2016
 
EAN 9783527339709
ISBN 978-3-527-33970-9
No. of pages 432
Dimensions 175 mm x 26 mm x 252 mm
Weight 1042 g
Illustrations 38 Tabellen
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Atomic physics, nuclear physics

Chemie, Physik, Nanotechnologie, Festkörperphysik, chemistry, Kristallographie, Physics, Solid State Physics, Nanotechnology, Nanophysics, Crystallography, Nanophysik, Oberflächenphysik

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.