Fr. 83.00

Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers

English, German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book on recent research in noncommutative harmonic analysis treats the Lp boundedness of Riesz transforms associated with Markovian semigroups of either Fourier multipliers on non-abelian groups or Schur multipliers. The detailed study of these objects is then continued with a proof of the boundedness of the holomorphic functional calculus for Hodge-Dirac operators, thereby answering a question of Junge, Mei and Parcet, and presenting a new functional analytic approach which makes it possible to further explore the connection with noncommutative geometry. These Lp operations are then shown to yield new examples of quantum compact metric spaces and spectral triples.  The theory described in this book has at its foundation one of the great discoveries in analysis of the twentieth century: the continuity of the Hilbert and Riesz transforms on Lp. In the works of Lust-Piquard (1998) and Junge, Mei and Parcet (2018), it became apparent that these Lp operations can be formulated on Lp spaces associated with groups. Continuing these lines of research, the book provides a self-contained introduction to the requisite noncommutative background.
 Covering an active and exciting topic which has numerous connections with recent developments in noncommutative harmonic analysis, the book will be of interest both to experts in no-commutative Lp spaces and analysts interested in the construction of Riesz transforms and Hodge-Dirac operators.

List of contents

- 1. Introduction. - 2. Preliminaries. - 3. Riesz Transforms Associated to Semigroups of Markov Multipliers. - 4. Boundedness of H Functional Calculus of Hodge-Dirac Operators. - 5. Locally Compact Quantum Metric Spaces and Spectral Triples. - A. Appendix: Lévy Measures and 1-Cohomology.

About the author










Cédric Arhancet is a French mathematician working in the preparatory cycle for engineering schools at Lycée Lapérouse (France). He works in several areas of functional analysis including noncommutative Lp-spaces, Fourier multipliers, semigroups of operators and noncommutative geometry. More recently, he has connected his research to Quantum Information Theory.

Christoph Kriegler is a German-French mathematician working at Universit Clermont Auvergne, France. His research interests lie in harmonic and functional analysis. In particular, he works on functional calculus for sectorial operators, and spectral multipliers in connection with geometry of Banach spaces on the one hand, and on the other hand on noncommutative Lp espaces and operator spaces.


Product details

Authors Cédric Arhancet, Christoph Kriegler
Publisher Springer, Berlin
 
Languages English, German
Product format Paperback / Softback
Released 13.08.2022
 
EAN 9783030990107
ISBN 978-3-0-3099010-7
No. of pages 280
Dimensions 155 mm x 15 mm x 235 mm
Illustrations XII, 280 p.
Series Lecture Notes in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.