Fr. 226.00

Nonlinear Control for Blood Glucose Regulation of Diabetic Patients: - An Lmi Approac

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










Nonlinear Control for Blood Glucose Regulation of Diabetic Patients: An LMI-Based Approach exposes readers to the various existing mathematical models that define the dynamics of glucose-insulin for Type 1 diabetes patients. After providing insights into the mathematical model of patients, the authors discuss the need and emergence of new control techniques that can lead to further development of an artificial pancreas. The book presents various nonlinear control techniques to address the challenges that Type 1 diabetic patients face in maintaining their blood glucose level in the safe range (70-180 mg/dl). The closed-loop solution provided by the artificial pancreas depends mainly on the effectiveness of the control algorithm, which acts as the brain of the system. APS control algorithms require a mathematical model of the gluco-regulatory system of the T1D patients for their design. Since the gluco-regulatory system is inherently nonlinear and largely affected by external disturbances and parametric uncertainty, developing an accurate model is very difficult.

List of contents










Section 1: Introduction
1. The History, Present & Future progression of Artificial Pancreas
2. Biomedical Control & its importance in Artificial Pancreas
3. A brief discussion in Nonlinear Control Tools

Section 2: Type 1 Diabetes: Control Oriented Modelling
4. A review on the existing Artificial pancreas Models
5. Developing and validating Nonlinear Models based on Input-Output data

Section 3: State Estimation via Robust Nonlinear Observers
6. Mathematical formulation of Robust Nonlinear Observers
7. State Estimation

Section 4: Design of Robust Nonlinear Control Techniques
8. Design of Nonlinear Control Technique based on Feedback Linearization
9. Design of Robust LMI based Control Techniques
10. Conclusions

Section 5: Proposed Architecture for In-Silico Artificial Pancreas
11. Sensors and Actuators
12. Integrated (in-silico) Model of Artificial Pancreas

About the author

Valentina Emilia Balas is currently a Full Professor in the Department of Automatics and Applied Software at the Faculty of Engineering, “Aurel Vlaicu” University of Arad, Romania. She holds a PhD cum Laude in Applied Electronics and Telecommunications from the Polytechnic University of Timisoara. Dr. Balas is the author of more than 350 research papers. She is the Editor-in-Chief of the 'International Journal of Advanced Intelligence Paradigms' and the 'International Journal of Computational Systems Engineering', an editorial board member for several other national and international publications, and an expert evaluator for national and international projects and PhD theses.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.