Fr. 134.00

Modal View of Atmospheric Variability - Applications of Normal-Mode Function Decomposition in Weather and Climate Research

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book reviews the theory and applications of the normal-mode functions in numerical weather prediction and weather and climate dynamics. The normal-mode functions, the eigensolutions of the linearized primitive equations describing the evolution of atmospheric winds and mass variables, have been used for a long time. They have played an important role in the development of data assimilation schemes and the initialization of numerical weather prediction models. Chapters also present how the normal modes can be applied to many theoretical and numerical problems in the atmospheric sciences, such as equatorial wave dynamics, baroclinic instability, energy transfers, and predictability across scales.


 
 

List of contents

3D Normal Mode Functions (NMFs) Of a Global Baroclinic Atmospheric Model.- Normal Mode Functions and Initialization.- Normal-Mode Functions and Atmospheric Data Assimilation.- 3D Modal Variability and Energy Transformations On The Sphere.- Generalization of Baroclinic Instability and Rossby Wave Saturation Theory.- Applications to Predictions And Climate Studies.

About the author










Nedjeljka Žagar is a professor of theoretical meteorology at Universität Hamburg. She received a BSc and a MSc in physics from the University of Zagreb, a PhD in dynamical meteorology from Stockholm University, and a postdoctoral fellowship from the Advanced Study Program of NCAR. She has been a professor of meteorology at the University of Ljubljana. Her research covers topics in atmospheric dynamics and numerical weather prediction, focusing on tropical aspects of data assimilation and predictability. 
Joseph Tribbia is a senior scientist at the National Center for Atmospheric Research (NCAR) and Head of its Atmospheric Modeling and Predictability Section in the Climate and Global Dynamics Division. He received a Bachelor of Science in Physics from the Illinois Institute of Technology in 1971, and a masters and doctoral degree in Atmospheric Science from the University of Michigan. He has been at NCAR since 1978 and his work has focused on the numerical simulation of the atmosphere and geophysically relevant flows. His journal publications include works on the application of dynamical systems theory in atmospheric dynamics, the problems of atmospheric data analysis and numerical weather prediction, atmospheric predictability and the prediction of forecast reliability, the simulation and prediction of El Nino/Southern Oscillation and decadal climate projections.


Product details

Assisted by Nedjeljka ¿Agar (Editor), Nedjeljka agar (Editor), Tribbia (Editor), Tribbia (Editor), Joseph Tribbia (Editor), Nedjeljk Zagar (Editor), Nedjeljka Zagar (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 20.12.2021
 
EAN 9783030609658
ISBN 978-3-0-3060965-8
No. of pages 318
Dimensions 155 mm x 18 mm x 235 mm
Illustrations XIII, 318 p. 114 illus., 50 illus. in color.
Series Mathematics of Planet Earth
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.