Fr. 182.00

Diagnosis and Fault-tolerant Control 1 - Data-driven and Model-based Fault Diagnosis Techniques

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more

This book presents recent advances in fault diagnosis strategies for complex dynamic systems. Its impetus derives from the need for an overview of the challenges of the fault diagnosis technique, especially for those demanding systems that require reliability, availability, maintainability and safety to ensure efficient operations. Moreover, the need for a high degree of tolerance with respect to possible faults represents a further key point, primarily for complex systems, as modeling and control are inherently challenging, and maintenance is both expensive and safety-critical.
 
Diagnosis and Fault-tolerant Control 1 also presents and compares different diagnosis schemes using established case studies that are widely used in related literature. The main features of this book regard the analysis, design and implementation of proper solutions for the problems of fault diagnosis in safety critical systems. The design of the considered solutions involves robust data-driven, model-based approaches.

List of contents

Introduction ix
Vicenç PUIG and Silvio SIMANI
 
Chapter 1. Mathematical Modeling and Fault Description 1
Silvio SIMANI
 
1.1. Introduction 1
 
1.2. Model-based FDI techniques 2
 
1.3. Modeling of faulty systems 3
 
1.3.1. Fault modeling and description 5
 
1.3.2. Mathematical description 6
 
1.4. Residual generation 11
 
1.5. Residual generation techniques 14
 
1.5.1. Residual generation via parameter estimation 15
 
1.5.2. Observer-based approaches 18
 
1.5.3. Fault detection via parity equations 24
 
1.6. Change detection and symptom evaluation 28
 
1.7. Residual generation robustness problem 30
 
1.7.1. FDI H infinity approach 32
 
1.7.2. Active and passive disturbance decoupling 35
 
1.8. Fault diagnosis technique integration 36
 
1.8.1. Fuzzy logic for residual generation 37
 
1.8.2. Neural networks for fault diagnosis 38
 
1.8.3. Neuro-fuzzy approaches to FDI 40
 
1.8.4. Fault detectability and isolability 42
 
1.8.5. NF model structure identification 43
 
1.8.6. NF residual generation for FDI 44
 
1.9. Conclusion 46
 
1.10. References 47
 
Chapter 2. Structural Analysis 57
Mattias KRYSANDER and Erik FRISK
 
2.1. Introduction 57
 
2.2. Background 58
 
2.2.1. Structural models 58
 
2.2.2. Dulmage-Mendelsohn decomposition and matchings 60
 
2.2.3. Dulmage-Mendelsohn decomposition and simulation 63
 
2.3. Fault isolability analysis 64
 
2.3.1. Fault detectability analysis 64
 
2.3.2. Fault isolability analysis 65
 
2.3.3. Canonical isolability decomposition of the overdetermined part 67
 
2.4. Testable submodels 69
 
2.4.1. Basic definitions 69
 
2.4.2. MSO algorithm 71
 
2.4.3. Residual generation based on matching 72
 
2.5. Sensor placement 74
 
2.5.1. The basic sensor placement problem 74
 
2.5.2. A structural approach 75
 
2.6. Summary and discussion 80
 
2.7. References 81
 
Chapter 3. Set-based Fault Detection and Isolation 83
Ye WANG and Vicenç PUIG
 
3.1. Introduction 83
 
3.2. Notations, definitions and properties 84
 
3.3. Problem statement 86
 
3.3.1. Uncertain discrete-time linear systems 86
 
3.3.2. Set-based methods 86
 
3.3.3. FDI problem statement 88
 
3.4. Proposed techniques 89
 
3.4.1. Set-membership approach 89
 
3.4.2. Zonotopic observer 90
 
3.4.3. Relationship between set-based methods 91
 
3.5. Design methods 92
 
3.5.1. Robustness conditions 92
 
3.5.2. Fault sensitivity condition 96
 
3.6. Fault detection and isolation procedures 99
 
3.6.1. Fault detection 99
 
3.6.2. Fault isolation 100
 
3.7. Application example: quadruple-tank system 101
 
3.7.1. Results with robustness condition 105
 
3.7.2. Results with robustness and fault sensitivity conditions 105
 
3.8. Conclusion 105
 
3.9. References 109
 
Chapter 4. Diagnosis of Stochastic Systems 111
Gregory PROVAN
 
4.1. Introduction 111
 
4.2. Stochastic diagnosis task 113
 
4.2.1. Notation 113
 
4.2.2. Problem formulation 113
 
4.2.3. Representing uncertainty 115
 
4.3. Inference methods for diagnosis task 116
 
4.3.1. Difference with other tasks 116
 
4.4. Model-based approach 117
 
4.4.1. Traditional FDD methods 117
 
4.4.2. Bayesian inversion/filtering 120
 
4.5. Data-driven approaches 122
 <

About the author










Vicenc Puig is Professor of Automatic Control at the Universitat Politècnica de Catalunya (UPC), Spain. He has published more than 80 journal articles and more than 350 articles in international conference/workshop proceedings related to diagnosis and faulttolerant control.

Silvio Simani is Professor of Automatic Control in the Engineering Department of Ferrara University, Italy. He has published about 260 journal and conference papers, several book chapters and four monographs on fault diagnosis and sustainable control topics.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.