Fr. 136.00

Derived Functors And Sheaf Cohomology

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more










The aim of the book is to present a precise and comprehensive introduction to the basic theory of derived functors, with an emphasis on sheaf cohomology and spectral sequences. It keeps the treatment as simple as possible, aiming at the same time to provide a number of examples, mainly from sheaf theory, and also from algebra.
The first part of the book provides the foundational material: Chapter 1 deals with category theory and homological algebra. Chapter 2 is devoted to the development of the theory of derived functors, based on the notion of injective object. In particular, the universal properties of derived functors are stressed, with a view to make the proofs in the following chapters as simple and natural as possible. Chapter 3 provides a rather thorough introduction to sheaves, in a general topological setting. Chapter 4 introduces sheaf cohomology as a derived functor, and, after also defining ¿ech cohomology, develops a careful comparison between the two cohomologies which is a detailed analysis not easily available in the literature. This comparison is made using general, universal properties of derived functors. This chapter also establishes the relations with the de Rham and Dolbeault cohomologies. Chapter 5 offers a friendly approach to the rather intricate theory of spectral sequences by means of the theory of derived triangles, which is precise and relatively easy to grasp. It also includes several examples of specific spectral sequences. Readers will find exercises throughout the text, with additional exercises included at the end of each chapter.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.