Fr. 32.90

Text Analysis in Python for Social Scientists - Prediction and Classification

English · Paperback / Softback

Shipping usually within 3 to 5 weeks

Description

Read more










This Element provides the working social scientist with an overview of the most common methods for text classification, an intuition of their applicability, and Python code to execute them. It covers both the ethical foundations of such work as well as the emerging potential of neural network methods.

List of contents










1. Introduction; 2. Ethics, Fairness, and Bias; 3. Classification; 4. Text as Input; 5. Labels; 6. Train-Dev-Test; 7. Performance Metrics; 8. Comparison and Significance Testing; 9. Overfitting and Regularization; 10. Model Selection and Other Classifiers; 11. Model Bias; 12. Feature Selection; 13. Structured Prediction; 14. Neural Networks Background; 15. Neural Architectures and Models.

Summary

This Element provides the working social scientist with an overview of the most common methods for text classification, an intuition of their applicability, and Python code to execute them. It covers both the ethical foundations of such work as well as the emerging potential of neural network methods.

Foreword

A practical guide to text classification and neural networks in Python for social scientists.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.