Fr. 59.50

Arbeitsbuch Höhere Mathematik in Rezepten

German · Paperback / Softback

Shipping usually within 4 to 7 working days

Description

Read more

In diesem Buch stellen wir die mehr als 500 Aufgaben des Lehrbuchs Höhere Mathematik in Rezepten (vierte Auflage) des gleichen Autors mit Lösungen zusammen.
Sie haben die Gelegenheit, die Rezepte des Rezeptebuchs zum Lösen typischer Aufgabenstellungen der Höheren Mathematik bei vielen Beispielen anzuwenden. Wir bieten auch zahlreiche Aufgaben zum Nachdenken und Knobeln an, die das tiefere Verständnis für Mathematik fördern. Nicht zuletzt findet man auch einige Programmieraufgaben, mit deren Lösungen Sie in der Lage sind, zahlreiche Aufgabenstellungen zu bearbeiten, mit denen Sie im Laufe Ihres Studiums bzw. Berufslebens konfrontiert sein werden.

Behandelt werden alle Themen, die üblicherweise in vier Semestern Höhere Mathematik unterrichtet werden. Im Einzelnen sind dies Analysis einer und mehrerer Variabler, lineare Algebra, Vektoranalysis, Differenzialgleichungen (gewöhnliche und partielle), Integraltransformationen und Funktionentheorie.In der vorliegenden vierten Auflage des Arbeitsbuchs sind die Aufgaben und Lösungen an die vierte Auflage des Hauptwerks angepasst.

List of contents

Vorwort.- 1 Sprechweisen, Symbole und Mengen.- 2 Die natürlichen, ganzen und rationalen Zahlen.- 3 Die reellen Zahlen.- 4 Maschinenzahlen.- 5 Polynome.- 6 Trigonometrische Funktionen.- 7 Komplexe Zahlen - Kartesische Koordinaten.- 8 Komplexe Zahlen - Polarkoordinaten.- 9 Lineare Gleichungssysteme.- 10 Rechnen mit Matrizen.- 11 LR-Zerlegung einer Matrix.- 12 Die Determinante.- 13 Vektorräume.- 14 Erzeugendensysteme und lineare (Un-)Abhängigkeit.- 15 Basen von Vektorräumen.- 16 Orthogonalität I.- 17 Orthogonalität II.- 18 Das lineare Ausgleichsproblem.- 19 Die QR-Zerlegung einer Matrix.- 20 Folgen.- 21 Berechnung von Grenzwerten von Folgen.- 22 Reihen.- 23 Abbildungen.- 24 Potenzreihen.- 25 Grenzwerte und Stetigkeit.- 26 Differentiation.- 27 Anwendungen der Differentialrechnung I.- 28 Anwendungen der Differentialrechnung II.- 29 Polynom- und Splineinterpolation.- 30 Integration I.- 31 Integration II.- 32 Uneigentliche Integrale.- 33 Separierbare und lineare Differentialgleichungen 1. Ordnung.- 34 Lineare Differentialgleichungen mit konstanten Koeffizienten.- 35 Einige besondere Typen von Differentialgleichungen.- 36 Numerik gewöhnlicher Differentialgleichungen I.- 37 Lineare Abbildungen und Darstellungsmatrizen.- 38 Basistransformation.- 39 Diagonalisierung - Eigenwerte und Eigenvektoren.- 40 Numerische Berechnung von Eigenwerten und Eigenvektoren.- 41 Quadriken.- 42 Schurzerlegung und Singulärwertzerlegung.- 43 Die Jordannormalform I.- 44 Die Jordannormalform II.- 45 Definitheit und Matrixnormen.- 46 Funktionen mehrerer Veränderlicher.- 47 Partielle Differentiation - Gradient, Hessematrix, Jacobimatrix.- 48 Anwendungen der partiellen Ableitungen.- 49 Extremwertbestimmung.- 50 Extremwertbestimmung unter Nebenbedingungen.- 51 Totale Differentiation, Differentialoperatoren.- 52 Implizite Funktionen.- 53 Koordinatentransformationen.- 54 Kurven I.- 55 Kurven II.- 56 Kurvenintegrale.- 57 Gradientenfelder.- 58 Bereichsintegrale.- 59 Die Transformationsformel.- 60 Flächen und Flächenintegrale.- 61 Integralsätze I.- 62 Integralsätze II.- 63 Allgemeines zu Differentialgleichungen.- 64 Die exakte Differentialgleichung.- 65 Lineare Differentialgleichungssysteme I.- 66 Lineare Differentialgleichungssysteme II.- 67 Lineare Differentialgleichungssysteme II.- 68 Randwertprobleme.- 69 Grundbegriffe der Numerik.- 70 Fixpunktiteration.- 71 Iterative Verfahren für lineare Gleichungssysteme.- 72 Optimierung.- 73 Numerik gewöhnlicher Differentialgleichungen II.- 74 Fourierreihen - Berechnung der Fourierkoeffzienten.- 75 Fourierreihen - Hintergründe, Sätze und Anwendung.- 76 Fouriertransformation I.- 77 Fouriertransformation II.- 78 Diskrete Fouriertransformation.- 79 Die Laplacetransformation.- 80 Holomorphe Funktionen.- 81 Komplexe Integration.- 82 Laurentreihen.- 83 Der Residuenkalkül.- 84 Konforme Abbildungen.- 85 Harmonische Funktionen und das Dirichlet'sche Randwertproblem.- 86 Partielle Differentialgleichungen 1. Ordnung.- 87 Partielle Differentialgleichungen 2. Ordnung - Allgemeines.- 88 Die Laplace- bzw. Poissongleichung.- 89 Die Wärmeleitungsgleichung.- 90 Die Wellengleichung.- 91 Lösen von pDGLen mit Fourier- und Laplacetransformation.- Index.

About the author

Prof. Dr. Christian Karpfinger lehrt an der Technischen Universität München; 2004 erhielt er den Landeslehrpreis des Freistaates Bayern.

Summary

Enthält rund 540 praxiserprobte Aufgaben mit Lösungen
Erklärt alle Lösungen ausführlich
Umfasst alle Gebiete der Höheren Mathematik für Ingenieure
In 4. Auflage angepasst auf 4. Auflage des Hauptwerks

Product details

Authors Karpfinger, Christian Karpfinger, Christian (Prof. Dr.) Karpfinger
Publisher Springer, Berlin
 
Languages German
Product format Paperback / Softback
Released 08.04.2022
 
EAN 9783662643440
ISBN 978-3-662-64344-0
No. of pages 756
Dimensions 170 mm x 40 mm x 240 mm
Weight 1608 g
Illustrations XX, 756 S. 91 Abb., 31 Abb. in Farbe.
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Analysis, Algebra, A, Differentialrechnung und -gleichungen, Mathematics and Statistics, Linear Algebra, Differential equations, Algebras, Linear, Analysis (Mathematics), Mathematical analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.