Fr. 76.00

Machine Learning for Medical Image Reconstruction - 4th International Workshop, MLMIR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2021, held in conjunction with MICCAI 2021, in October 2021. The workshop was planned to take place in Strasbourg, France, but was held virtually due to the COVID-19 pandemic. The 13 papers presented were carefully reviewed and selected from 20 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.

List of contents

Deep Learning for Magnetic Resonance Imaging.- HyperRecon: Regularization-Agnostic CS-MRI Reconstruction with Hypernetworks.- Efficient Image Registration Network For Non-Rigid Cardiac Motion Estimation.- Evaluation of the robustness of learned MR image reconstruction to systematic deviations between training and test data for the models from the fastMRI challenge.- Self-Supervised Dynamic MRI Reconstruction.- A Simulation Pipeline to Generate Realistic Breast Images For Learning DCE-MRI Reconstruction.- Deep MRI Reconstruction with Generative Vision Transformers.- Distortion Removal and Deblurring of Single-Shot DWI MRI Scans.- One Network to Solve Them All: A Sequential Multi-Task Joint Learning Network Framework for MR Imaging Pipeline.- Physics-informed self-supervised deep learning reconstruction for accelerated rst-pass perfusion cardiac MRI.- Deep Learning for General Image Reconstruction.- Noise2Stack: Improving Image Restoration by Learning from Volumetric Data.- Real-time Video Denoising in Fluoroscopic Imaging.- A Frequency Domain Constraint for Synthetic and Real X-ray Image Super Resolution.- Semi- and Self-Supervised Multi-View Fusion of 3D Microscopy Images using Generative Adversarial Networks.

Product details

Assisted by Nandinee Haq (Editor), Patrici Johnson (Editor), Patricia Johnson (Editor), Andreas Maier (Editor), Andreas Maier et al (Editor), Tobias Würfl (Editor), Jaejun Yoo (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 23.12.2021
 
EAN 9783030885519
ISBN 978-3-0-3088551-9
No. of pages 142
Dimensions 155 mm x 8 mm x 235 mm
Illustrations VIII, 142 p. 53 illus., 37 illus. in color.
Series Lecture Notes in Computer Science
Image Processing, Computer Vision, Pattern Recognition, and Graphics
Subject Natural sciences, medicine, IT, technology > IT, data processing > IT

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.