Fr. 182.00

Infrared Spectroscopy of Symmetric and Spherical Top Molecules for Space Observation, Volume 2

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more

This book, Volume 4 in the series, is dedicated to the relationship between laboratory spectroscopy, recording ever-more-complex spectra using increasingly powerful instruments benefiting from the latest technology, and the development of observation using instruments that are embedded in mobile probes or nanosatellites.
 
The theoretical models described in Volumes 1, 2 and 3 are used in this volume, applying the cumulant theorem in the mean-field theory framework to interpret the near and mid-infrared spectra of symmetric top molecules, such as ammonia (NH3) and spherical molecules, such as methane (CH4). These molecules can be isolated in their gaseous form or subjected to the environmental constraints of a nano-cage (a substitution site, clathrate, fullerene or zeolite) or surfaces.
 
These methods are not only valuable in the fields of environmental sciences, planetology and astrophysics, but also fit into the framework of data processing and the concept of Big Data.

List of contents

Foreword ix
Pierre DROSSART
 
Preface xi
 
Chapter 1. IR Spectra in Space Observation 1
 
1.1. Introduction 1
 
1.2. Fourier transform spectroscopy 7
 
1.2.1. Principle of IR spectrum acquisition by interferometry 9
 
1.2.2. Design and operation of a long path difference interferometer 11
 
1.2.3. FTIR absorption spectroscopy in matrices 14
 
1.2.4. LIF and DR IR-IR spectroscopies in matrices 21
 
1.3. Resonant cavity laser absorption spectroscopy 26
 
1.3.1. Intracavity laser absorption spectroscopy (ICLAS) 30
 
1.3.2. Cavity ring-down spectroscopy (CRDS) 33
 
1.3.3. Frequency comb spectroscopy (FCS) 38
 
1.4. Spectroscopy for space observation 43
 
1.4.1. Spectroscopic ellipsometry for space observation 43
 
1.4.2. Space-borne spectroscopy 56
 
1.4.3. LIDAR spectroscopy for space observation 60
 
1.5. Conclusion 64
 
1.6. Appendices 64
 
1.6.1. Appendix 1: Measurement distortion and data processing 64
 
Chapter 2. Interactions Between a Molecule and Its Solid Environment 71
 
2.1. Introduction 72
 
2.2. Active molecule - solid environment system 74
 
2.2.1. Binary interaction energy 74
 
2.2.2. Dispersion-repulsion contribution 76
 
2.2.3. Electrostatic contribution 76
 
2.2.4. Induction contribution 78
 
2.3. Two-center expansion of the term 79
 
2.4. Conclusion 81
 
2.5. Appendices 82
 
2.5.1. Appendix 1: Multipole moments and dipole polarizability of a molecule with respect to its fixed reference frame 82
 
2.5.2. Appendix 2: Elements of the rotational matrix 82
 
2.5.3. Appendix 3: Clebsch-Gordan coefficients 84
 
Chapter 3. Nanocage of Rare Gas Matrix 87
 
3.1. Introduction 87
 
3.2. Rare gases in solid state 88
 
3.3. Molecule inclusion and deformation of the doped crystal 90
 
3.3.1. Molecule inclusion 90
 
3.3.2. Deformation of the doped crystal 92
 
3.3.3. NH3 in an argon matrix 95
 
3.3.4. Renormalization of the system's Hamiltonian 96
 
3.4. Motions of NH3 trapped in an argon matrix 97
 
3.4.1. Vibration-inversion mode nu2 98
 
3.4.2. Orientational motion 100
 
3.4.3. Translational motion 106
 
3.4.4. Orientational motion-heat bath coupling 107
 
3.5. Infrared spectra 108
 
3.5.1. Infrared absorption coefficient 108
 
3.5.2. Bar spectrum 109
 
3.5.3. Spectral profile 112
 
3.6. Appendices 116
 
3.6.1. Appendix 1: Normal modes of vibrations of a Bravais lattice with face centered cubic (fcc) symmetry 116
 
3.6.2. Appendix 2: Adjustment of the weakly perturbed rotational potential energy on the basis of the rotation matrix elements 120
 
3.6.3. Appendix 3: Expansion coefficients of the coupling between the orientation of the molecule and lattice vibrations (phonons) 121
 
Chapter 4. Nanocages of Hydrate Clathrates 123
 
4.1. Introduction 123
 
4.2. The extended substitution model 124
 
4.3. Clathrate structures 129
 
4.4. Inclusion of a CH4 or NH3 molecule in a clathrate nanocage 131
 
4.4.1. Inclusion model 131
 
4.4.2. Interaction potential energy - equilibrium configuration 133
 
4.5. System Hamiltonian and separation of movements 136
 
4.6. Translational motion 139
 
4.6.1. CH4 - nanocages of the sI structure 140
 
4.6.2. NH3 - nanocages of the sI structure 141
 
4.7. Vibrational motions 142
 
4.7.1. CH4 - nanocages of the sI structure 143
 
4.7.2. NH3 - nanocages of the sI structure 14

About the author










Pierre-Richard Dahoo is Professor and Holder of the Chair Materials Simulation and Engineering at the University of Versailles Saint-Quentin in France. He is Director of Institut des Sciences et Techniques des Yvelines and a specialist in modeling and spectroscopy at the LATMOS laboratory of CNRS.
Azzedine Lakhlifi is Senior Lecturer at the Faculty of Sciences and Techniques of University of Franche-Comte and a researcher, specializing in modeling and spectroscopy at UTINAM Institute, UMR 6213 CNRS, OSU THETA Franche-Comte Bourgogne, University Bourgogne Franche-Comte, Besancon, France.


Summary

This book, Volume 4 in the series, is dedicated to the relationship between laboratory spectroscopy, recording ever-more-complex spectra using increasingly powerful instruments benefiting from the latest technology, and the development of observation using instruments that are embedded in mobile probes or nanosatellites.

The theoretical models described in Volumes 1, 2 and 3 are used in this volume, applying the cumulant theorem in the mean-field theory framework to interpret the near and mid-infrared spectra of symmetric top molecules, such as ammonia (NH3) and spherical molecules, such as methane (CH4). These molecules can be isolated in their gaseous form or subjected to the environmental constraints of a nano-cage (a substitution site, clathrate, fullerene or zeolite) or surfaces.

These methods are not only valuable in the fields of environmental sciences, planetology and astrophysics, but also fit into the framework of data processing and the concept of Big Data.

Product details

Authors Pierre-Richar Dahoo, Pierre-Richard Dahoo, Azzedine Lakhlifi
Publisher Wiley & Sons
 
Languages English
Product format Hardback
Released 23.12.2021
 
EAN 9781786306524
ISBN 978-1-78630-652-4
No. of pages 320
Dimensions 157 mm x 25 mm x 242 mm
Weight 620 g
Subjects Natural sciences, medicine, IT, technology > Chemistry

Chemie, Physik, Astronomie, chemistry, Physics, NMR-Spektroskopie / MRT / Bildgebende Verfahren, NMR Spectroscopy / MRI / Imaging, NMR-Spektroskopie, Astronomie u. Astrophysik, Astronomy & Astrophysics, Infrarotspektroskopie

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.