Fr. 126.00

Power System Analysis and Design, SI Edition

English · Paperback / Softback

Shipping usually within 1 to 3 working days

Description

Read more

Examine the basic concepts behind today's power systems as well as the tools you need to apply your newly acquired skills to real-world situations with POWER SYSTEM ANALYSIS AND DESIGN, SI, 7th Edition. The latest updates throughout this new edition reflect the most recent trends in the field as the authors highlight key physical concepts with clear explanations of important mathematical techniques. New co-author Adam Birchfield joins this prominent author team with fresh insights into the latest technological advancements. The authors develop theory and modeling from simple beginnings, clearly demonstrating how you can apply the principles you learn to new, more complex situations. New learning objectives and helpful case study summaries help focus your learning, while the updated PowerWorld® Simulation works seamlessly with this edition's content to provide hands-on design experience. WebAssign for Glover/Overbye/Sarma's Power System Analysis and Design, SI, 7th Edition, helps you prepare for class with confidence. Its online learning platform for your math, statistics, science and engineering courses helps you practice and absorb what you learn.

List of contents

1. INTRODUCTION.Case Study: Transformation of the Grid: The Impact of Distributed Energy Resources on Bulk Power Systems. History of Electric Power Systems. Present and Future Trends. Electric Utility Industry Structure. Computers in Power System Engineering. PowerWorld Simulator.2. FUNDAMENTALS.Case Study: Investing in the Future: How Small Utilities are Finding Success with Advanced Distribution Management Systems. Phasors. Instantaneous Power in Single-Phase AC Circuits. Complex Power. Network Equations. Balanced Three-Phase Circuits. Power in Balanced Three-Phase Circuits. Advantages of Balanced Three-Phase vs. Single-Phase Systems. Energy Conversion.3. POWER TRANSFORMERS.Case Study: Transformer Innovation in a Changing Energy Landscape The Ideal Transformer. Equivalent Circuits for Practical Transformers. The Per-Unit System. Three-Phase Transformer Connections and Phase Shift. Per-Unit Equivalent Circuits of Balanced Three-Phase Two-Winding Transformers. Three-Winding Transformers. Autotransformers. Transformers with Off-Nominal Turns Ratios.4. TRANSMISSION-LINE PARAMETERS.Case Study: Renewables, Resiliency Drive Transmission Upgrades. Case Study: Greenlink Nevada to Drive Job Creation, Economic Recovery from Covid-19 . Transmission Line Design Considerations. Resistance. Conductance. Inductance: Solid Cylindrical Conductor. Inductance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing. Inductance: Composite Conductors, Unequal Phase Spacing, Bundled Conductors. Series Impedances: Three-Phase Line with Neutral Conductors and Earth Return. Electric Field and Voltage: Solid Cylindrical Conductor. Capacitance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing. Capacitance: Stranded Conductors, Unequal Phase Spacing, Bundled Conductors. Shunt Admittances: Lines with Neutral Conductors and Earth Return. Electric Field Strength at Conductor Surfaces and at Ground Level. Parallel Circuit Three-Phase Lines.5. TRANSMISSION LINES: STEADY-STATE OPERATION.Case Study: Opportunities for Embedded High Voltage Direct Current. Medium and Short Line Approximations. Transmission-Line Differential Equations. Equivalent p Circuit. Lossless Lines. Maximum Power Flow. Line Loadability. Reactive Compensation Techniques.6. POWER FLOWS.Case Study: Xcel Energy Strengthens the Grid with Advanced SVCs. Direct Solutions to Linear Algebraic Equations: Gauss Elimination. Iterative Solutions to Linear Algebraic Equations: Jacobi and Gauss-Seidel. Iterative Solutions to Nonlinear Algebraic Equations: Newton-Raphson. The Power Flow Problem. Power Flow Solution by Gauss-Seidel. Power Flow Solution by Newton-Raphson. Control of Power Flow. Sparsity Techniques. Fast Decoupled Power Flow. The "DC" Power Flow.7. ECONOMIC DISPATCH AND OPTIMAL POWER FLOW.Case Study: Electricity Markets in the United States. Economic Dispatch. Optimal Power Flow. Design Projects.8. SYMMETRICAL FAULTS.Case Study: Pumped Storage Hydro: Then and Now. Series R-L Circuit Transients. Three-Phase Short Circuit - Unloaded Synchronous Machine. Power System Three-Phase Short Circuits. Bus Impedance Matrix. Circuit Breaker and Fuse Selection. Design Project.9. SYMMETRICAL COMPONENTS.Case Study: The Ups and Downs of Gravity Energy Storage. Definition of Symmetrical Components. Sequence Networks of Impedance Loads. Sequence Networks of Series Impedances. Sequence Networks of Three-Phase Lines. Sequence Networks of Rotating Machines. Per-Unit Sequence Models of Three-Phase Two-Winding Transformers. Per-Unit Sequence Models of Three-Phase Three-Winding Transformers. Power in Sequence Networks.10. UNSYMMETRICAL FAULTS.Case Study: ABB Commissions Switchgear Installation with Eco-Efficient Gas. Case Study: Transforming the Transmission Industry: The Rapid Adoption of Green Gas for Grid (g3) signals a global change in environmental responsibility. Case Study: PG&E to use SF6-Free Products from Siemens. System Rep

About the author

Dr. J. Duncan Glover is president and principal engineer at Failure Electrical, LLC. He earned his Ph.D. from MIT. Dr. Glover has served as principal engineer at Exponent Failure Analysis Associates and was a tenured associate professor in the electrical and computer engineering department of Northeastern University. Dr. Glover has held several engineering positions with leading companies, including the International Engineering Company and the American Electric Power Service Corporation. He specializes in issues pertaining to electrical engineering, particularly as they relate to failure analysis of electrical systems, subsystems and components, including causes of electrical fires.Dr. J. Duncan Glover is president and principal engineer at Failure Electrical, LLC. He earned his Ph.D. from MIT. Dr. Glover has served as principal engineer at Exponent Failure Analysis Associates and was a tenured associate professor in the electrical and computer engineering department of Northeastern University. Dr. Glover has held several engineering positions with leading companies, including the International Engineering Company and the American Electric Power Service Corporation. He specializes in issues pertaining to electrical engineering, particularly as they relate to failure analysis of electrical systems, subsystems and components, including causes of electrical fires.A forerunner in his field, Dr. Mulukutla S. Sarma has written not only this text, but also numerous technical articles for leading journals, including the first studies of methods for computer-aided analysis of three-dimensional nonlinear electromagnetic field problems as applied to the design of electrical machinery. Dr. Sarma is a life-fellow of IEEE (U.S.A), a fellow of IEEE (U.K.) and IEEE (India), a reviewer of several IEEE Transactions, a member of the IEEE Rotating Machinery Committee and a member of several other professional societies. He is also a professional engineer in the State of Massachusetts.Dr. Tom Overbye serves as professor and holder of the O’Donnell Foundation Chair III in the Department of Electrical and Computer Engineering at Texas A&M University. He earned his Ph.D. from the University of Wisconsin. Prior to joining Texas A&M in 2017, he was a professor for 25 years at the University of Illinois. Before entering academia, Dr. Overbye worked at Madison Gas and Electric Company. He is also the primary developer of the PowerWorld® Simulator computer package and is a founder of PowerWorld Corporation. Dr. Overbye has received several teaching and research honors, including the BP Amoco Award for Innovation in Undergraduate Education, a University of Wisconsin-Madison College of Engineering Distinguished Achievement Award and the 2011 IEEE Power and Energy Society Outstanding Engineering Educator Award. He is also a member of the US National Academy of Engineering. His primary interest lies in the area of power and energy systems.Dr. Adam B. Birchfield serves as assistant professor in the Department of Electrical and Computer Engineering at Texas A&M University. He holds a Ph.D. from Texas A&M University, a B.E.E. in engineering degree (summa cum laude) from Auburn University and an M.S. in electrical and computer engineering from the University of Illinois. Dr. Birchfield gained significant professional experience as a research engineer at the Electric Power Research Institute (EPRI). In addition to this text, he has written numerous journal and conference publications related to electric power grids and power systems.

Summary

Examine the basic concepts behind today's power systems as well as the tools you need to apply your newly acquired skills to real-world situations with POWER SYSTEM ANALYSIS AND DESIGN, SI, 7th Edition. The latest updates throughout this new edition reflect the most recent trends in the field as the authors highlight key physical concepts with clear explanations of important mathematical techniques. New co-author Adam Birchfield joins this prominent author team with fresh insights into the latest technological advancements. The authors develop theory and modeling from simple beginnings, clearly demonstrating how you can apply the principles you learn to new, more complex situations. New learning objectives and helpful case study summaries help focus your learning, while the updated PowerWorld® Simulation works seamlessly with this edition's content to provide hands-on design experience. WebAssign for Glover/Overbye/Sarma's Power System Analysis and Design, SI, 7th Edition, helps you prepare for class with confidence. Its online learning platform for your math, statistics, science and engineering courses helps you practice and absorb what you learn.

Product details

Authors Adam Birchfield, J. Duncan Glover, Glover J. Duncan, Thomas Overbye, Mulukutla Sarma
Publisher Cengage Learning EMEA
 
Languages English
Product format Paperback / Softback
Released 25.07.2022
 
EAN 9780357676196
ISBN 978-0-357-67619-6
No. of pages 864
Dimensions 190 mm x 20 mm x 230 mm
Weight 1271 g
Subjects Natural sciences, medicine, IT, technology > Technology > Electronics, electrical engineering, communications engineering

TECHNOLOGY & ENGINEERING / Electrical, Electrical Engineering

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.